Question #201708

1)Assume that the total marks were at an average of u=18 per assesment,and that the distribution of total marks are normally distributed with o=10

a)What is the proportion that a student would have a mark more than 24 mark if randomly selected ?

b)What proportion of students would have marks between 10 and 24



2)A normal distribution has u=80 o=10. What is the probability of random selecting the following scores?

a) x > 75

b) x < 85

c) between the mean and score of 90

d) between the mean and score of 50

e) 75 < x <85



1
Expert's answer
2021-06-02T13:04:07-0400

1.)

Given,

μ=18σ=10\mu=18\\\sigma=10


a) Probability that a student have mark more than 24

P(X>24)P(X>24)


z=Xμσ=241810=0.6z=\dfrac{X-\mu}{\sigma}=\dfrac{24-18}{10}=0.6


Using Standard normal distribution table:

So, P(X>24)=P(z>0.6)=0.2743P(X>24)=P(z>0.6)=0.2743


b)Probability that a student have marks between 10 and 24


P(10<X<24)P(10<X<24)


z1=Xμσ=101810=0.8 z2=Xμσ=241810=0.6z_1=\dfrac{X-\mu}{\sigma}=\dfrac{10-18}{10}=-0.8\\\ \\z_2=\dfrac{X-\mu}{\sigma}=\dfrac{24-18}{10}=0.6


Using Standard normal distribution table:




Hence, P(10<X<24)=P(0.8<z<0.6)=0.5139P(10<X<24)=P(-0.8<z<0.6)=0.5139



2.) Given,

μ=80σ=10\mu=80\\\sigma=10


(a) P(X>75)P(X>75)


z=Xμσ=758010=0.5z=\dfrac{X-\mu}{\sigma}=\dfrac{75-80}{10}=-0.5


Using Standard normal distribution table:

So, P(X>75)=P(z>0.5)=0.6915P(X>75)=P(z>-0.5)=0.6915




(b) P(X<85)P(X<85)


z=Xμσ=858010=0.5z=\dfrac{X-\mu}{\sigma}=\dfrac{85-80}{10}=0.5


Using Standard normal distribution table:

So, P(X<85)=P(z<0.5)=0.6915P(X<85)=P(z<0.5)=0.6915



(c) between the mean and score of 90


z1=Xμσ=808010=0z_1=\dfrac{X-\mu}{\sigma}=\dfrac{80-80}{10}=0


z2=Xμσ=908010=1z_2=\dfrac{X-\mu}{\sigma}=\dfrac{90-80}{10}=1


Using Standard normal distribution table:


P(0<z<1)=0.3413P(0<z<1)=0.3413



(d)  between the mean and score of 50



z1=Xμσ=808010=0z_1=\dfrac{X-\mu}{\sigma}=\dfrac{80-80}{10}=0


z2=Xμσ=508010=3z_2=\dfrac{X-\mu}{\sigma}=\dfrac{50-80}{10}=-3


Using Standard normal distribution table:




P(3<z<0)=0.4987P(-3<z<0)=0.4987



(e) 75 < x <85



z1=Xμσ=758010=0.5z_1=\dfrac{X-\mu}{\sigma}=\dfrac{75-80}{10}=-0.5


z2=Xμσ=858010=0.5z_2=\dfrac{X-\mu}{\sigma}=\dfrac{85-80}{10}=0.5


Using Standard normal distribution table:




P(75<X<85)=P(0.5<z<0.5)=0.3829P(75<X<85)=P(-0.5<z<0.5)=0.3829


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS