a continuous random variable T has the following probability density function.
f(t) = { 32t2/128, -4≤t<4
0, otherwise
a. find E(t)
b. find Var(T)
c. Var(2T+3)
"f(t)=\\begin{cases}\n 32t^2\/128 &\\text{if } -4\\leq t<4 \\\\\n 0 &\\text{otherwise } \n\\end{cases}"
First of all we have to check whether this function is probability density function
So for pdf "\\int_{-\\infty}^\\infty f(t)dx=1"
"\\int_{-\\infty}^\\infty f(t)dt=\\int_{-4}^4 \\dfrac{32t^2}{128}dt"
"= \\dfrac{32}{128}\\times\\dfrac{1}{3}[t^3]_{-4}^4\\\\\\ \\\\= \\dfrac{32}{128}\\times\\dfrac{1}{3}[4^3-(-4)^3]\\\\\\ \\\\=\\dfrac{32}{128}\\times \\dfrac{1}{3}\\times128\\\\\\ \\\\=\\dfrac{32}{3}\\neq 1"
So, it is not a probability density function.
(a) "E(t)=\\int_{-\\infty}^\\infty tf(t)dt=\\int_{-4}^4 \\dfrac{32t^3}{128}dt=\\dfrac{32}{128}\\times\\dfrac{1}{4}[t^4]_{-4}^4=\\dfrac{8}{128}[256-256]=0"
Hence, "E(t)=0"
(b) "Var(t)" "=E[(t-\\mu)^2]= \\int_{-\\infty}^\\infty (t-0)^2f(t)dt= \\int_{-\\infty}^\\infty t^2f(t)dt=\\int_{-4}^4 \\dfrac{32}{128}t^4"
"\\implies \\dfrac{32}{128}\\times \\dfrac{1}{5}[t^5]_{-4}^4=\\dfrac{32}{640}[1024-(-1024)]=\\dfrac{32\\times 2048}{640}=102.4"
(c) "Var(2t+3)=E[(2t+3-\\mu)^2]= \\int_{-\\infty}^\\infty (2t+3-0)^2f(t)dt= \\int_{-\\infty}^\\infty (2t+3)^2f(t)dt"
"\\implies \\int_{-\\infty}^\\infty (4t^2+12t+9)f(t)dt=4 \\int_{-\\infty}^\\infty t^2f(t)dt+12 \\int_{-\\infty}^\\infty tf(t)dt+9 \\int_{-\\infty}^\\infty f(t)dt"
We have ,
"\\int_{-\\infty}^\\infty f(t)dt=32\/3\\\\\\ \\\\ \\int_{-\\infty}^\\infty tf(t)dt=0\\\\\\ \\\\ \\int_{-\\infty}^\\infty t^2f(t)dt=102.4"
So,
"\\implies \\int_{-\\infty}^\\infty (4t^2+12t+9)f(t)dt=4 \\int_{-\\infty}^\\infty t^2f(t)dt+12 \\int_{-\\infty}^\\infty tf(t)dt+9 \\int_{-\\infty}^\\infty f(t)dt\\\\\\ \\\\\\implies 4(102.4)+12\\cdot(0)+9\\times\\dfrac{32}{3}=409.6+0+96=505.6"
Comments
Leave a comment