Question #201630

a continuous random variable T has the following probability density function.

f(t) = { 32t2/128, -4≤t<4

0, otherwise


a. find E(t)

b. find Var(T)

c. Var(2T+3)


1
Expert's answer
2021-06-03T15:44:00-0400

f(t)={32t2/128if 4t<40otherwise f(t)=\begin{cases} 32t^2/128 &\text{if } -4\leq t<4 \\ 0 &\text{otherwise } \end{cases}



First of all we have to check whether this function is probability density function

So for pdf f(t)dx=1\int_{-\infty}^\infty f(t)dx=1


f(t)dt=4432t2128dt\int_{-\infty}^\infty f(t)dt=\int_{-4}^4 \dfrac{32t^2}{128}dt

=32128×13[t3]44 =32128×13[43(4)3] =32128×13×128 =3231= \dfrac{32}{128}\times\dfrac{1}{3}[t^3]_{-4}^4\\\ \\= \dfrac{32}{128}\times\dfrac{1}{3}[4^3-(-4)^3]\\\ \\=\dfrac{32}{128}\times \dfrac{1}{3}\times128\\\ \\=\dfrac{32}{3}\neq 1


So, it is not a probability density function.


(a) E(t)=tf(t)dt=4432t3128dt=32128×14[t4]44=8128[256256]=0E(t)=\int_{-\infty}^\infty tf(t)dt=\int_{-4}^4 \dfrac{32t^3}{128}dt=\dfrac{32}{128}\times\dfrac{1}{4}[t^4]_{-4}^4=\dfrac{8}{128}[256-256]=0


Hence, E(t)=0E(t)=0



(b) Var(t)Var(t) =E[(tμ)2]=(t0)2f(t)dt=t2f(t)dt=4432128t4=E[(t-\mu)^2]= \int_{-\infty}^\infty (t-0)^2f(t)dt= \int_{-\infty}^\infty t^2f(t)dt=\int_{-4}^4 \dfrac{32}{128}t^4


    32128×15[t5]44=32640[1024(1024)]=32×2048640=102.4\implies \dfrac{32}{128}\times \dfrac{1}{5}[t^5]_{-4}^4=\dfrac{32}{640}[1024-(-1024)]=\dfrac{32\times 2048}{640}=102.4



(c) Var(2t+3)=E[(2t+3μ)2]=(2t+30)2f(t)dt=(2t+3)2f(t)dtVar(2t+3)=E[(2t+3-\mu)^2]= \int_{-\infty}^\infty (2t+3-0)^2f(t)dt= \int_{-\infty}^\infty (2t+3)^2f(t)dt


    (4t2+12t+9)f(t)dt=4t2f(t)dt+12tf(t)dt+9f(t)dt\implies \int_{-\infty}^\infty (4t^2+12t+9)f(t)dt=4 \int_{-\infty}^\infty t^2f(t)dt+12 \int_{-\infty}^\infty tf(t)dt+9 \int_{-\infty}^\infty f(t)dt


We have ,

f(t)dt=32/3 tf(t)dt=0 t2f(t)dt=102.4\int_{-\infty}^\infty f(t)dt=32/3\\\ \\ \int_{-\infty}^\infty tf(t)dt=0\\\ \\ \int_{-\infty}^\infty t^2f(t)dt=102.4


So,


    (4t2+12t+9)f(t)dt=4t2f(t)dt+12tf(t)dt+9f(t)dt     4(102.4)+12(0)+9×323=409.6+0+96=505.6\implies \int_{-\infty}^\infty (4t^2+12t+9)f(t)dt=4 \int_{-\infty}^\infty t^2f(t)dt+12 \int_{-\infty}^\infty tf(t)dt+9 \int_{-\infty}^\infty f(t)dt\\\ \\\implies 4(102.4)+12\cdot(0)+9\times\dfrac{32}{3}=409.6+0+96=505.6


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS