f(t)={32t2/1280if −4≤t<4otherwise
First of all we have to check whether this function is probability density function
So for pdf ∫−∞∞f(t)dx=1
∫−∞∞f(t)dt=∫−4412832t2dt
=12832×31[t3]−44 =12832×31[43−(−4)3] =12832×31×128 =332=1
So, it is not a probability density function.
(a) E(t)=∫−∞∞tf(t)dt=∫−4412832t3dt=12832×41[t4]−44=1288[256−256]=0
Hence, E(t)=0
(b) Var(t) =E[(t−μ)2]=∫−∞∞(t−0)2f(t)dt=∫−∞∞t2f(t)dt=∫−4412832t4
⟹12832×51[t5]−44=64032[1024−(−1024)]=64032×2048=102.4
(c) Var(2t+3)=E[(2t+3−μ)2]=∫−∞∞(2t+3−0)2f(t)dt=∫−∞∞(2t+3)2f(t)dt
⟹∫−∞∞(4t2+12t+9)f(t)dt=4∫−∞∞t2f(t)dt+12∫−∞∞tf(t)dt+9∫−∞∞f(t)dt
We have ,
∫−∞∞f(t)dt=32/3 ∫−∞∞tf(t)dt=0 ∫−∞∞t2f(t)dt=102.4
So,
⟹∫−∞∞(4t2+12t+9)f(t)dt=4∫−∞∞t2f(t)dt+12∫−∞∞tf(t)dt+9∫−∞∞f(t)dt ⟹4(102.4)+12⋅(0)+9×332=409.6+0+96=505.6
Comments