Question #201949

A population consists of the five measurements 2, 6, 8, 0, and 1.



1. How many different samples of size 3 can be drawn from the population (no replacement)?

2. Construct the sampling distribution of the sample means.


1
Expert's answer
2021-06-03T05:04:39-0400

 1.

We have population values 2,6,8,0,12,6,8,0,1 population size N=5N=5 and sample size n=3.n=3.Thus, the number of possible samples which can be drawn without replacement is


(Nn)=(53)=10\dbinom{N}{n}=\dbinom{5}{3}=10


2.


SampleSampleSample meanNo.values(Xˉ)12,6,816/322,6,08/332,6,19/342,8,010/352,8,111/362,1,03/376,8,115/386,8,014/396,1,07/3108,1,09/3\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 2,6, 8 & 16/3 \\ \hdashline 2 & 2,6,0 & 8/3 \\ \hdashline 3 & 2,6,1 & 9/3 \\ \hdashline 4 & 2,8,0 & 10/3\\ \hdashline 5 & 2,8,1 & 11/3 \\ \hdashline 6 & 2,1,0 & 3/3 \\ \hline 7 & 6,8,1 & 15/3 \\ \hline 8 & 6,8,0 & 14/3 \\ \hline 9 & 6,1,0 & 7/3 \\ \hline 10 & 8,1,0 & 9/3 \\ \hline \hline \end{array}





Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)3/311/103/309/907/311/107/3049/908/311/108/3064/909/322/1018/30162/9010/311/1010/30100/9011/311/1011/30121/9014/311/1014/30196/9015/311/1015/30225/9016/311/1016/30256/90Total101102/301182/90\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 3/3 & 1& 1/10 & 3/30 & 9/90 \\ \hdashline 7/3 & 1 & 1/10 & 7/30 & 49/90 \\ \hdashline 8/3 & 1 & 1/10 & 8/30 & 64/90 \\ \hdashline 9/3 & 2 & 2/10 & 18/30 & 162/90 \\ \hdashline 10/3 & 1 & 1/10 & 10/30 & 100/90 \\ \hdashline 11/3 & 1& 1/10 & 11/30 & 121/90 \\ \hdashline 14/3 & 1& 1/10 & 14/30 & 196/90 \\ \hdashline 15/3 & 1& 1/10 & 15/30 & 225/90 \\ \hdashline 16/3 & 1& 1/10 & 16/30 & 256/90 \\ \hdashline Total & 10 & 1 & 102/30 & 1182/90 \\ \hline \end{array}



3.

Mean


μ=2+6+8+0+15=3.4\mu=\dfrac{2+6+8+0+1}{5}=3.4




E(Xˉ)=Xˉf(Xˉ)=10230=3.4E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{102}{30}=3.4

The mean of the sampling distribution of the sample means is equal to the

the mean of the population.



E(Xˉ)=3.4=μE(\bar{X})=3.4=\mu


4.

Variance


σ2=15((23.4)2+(62.4)2+(83.4)2\sigma^2=\dfrac{1}{5}\big((2-3.4)^2+(6-2.4)^2+(8-3.4)^2(03.4)2+(13.4)2)=9.44(0-3.4)^2+(1-3.4)^2\big)=9.44


Standard deviation



σ=σ2=9.443.0725\sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.0725




Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2




=118290(10230)2=118751.573333=\dfrac{1182}{90}-(\dfrac{102}{30})^2=\dfrac{118}{75}\approx1.573333




Var(Xˉ)=118751.254326\sqrt{Var(\bar{X})}=\sqrt{\dfrac{118}{75}}\approx1.254326

Verification:


Var(Xˉ)=σ2n(NnN1)=9.443(5351)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{9.44}{3}(\dfrac{5-3}{5-1})=9.446=118751.573333,True=\dfrac{9.44}{6}=\dfrac{118}{75}\approx1.573333, True


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS