1.
We have population values 2 , 6 , 8 , 0 , 1 2,6,8,0,1 2 , 6 , 8 , 0 , 1 population size N = 5 N=5 N = 5 and sample size n = 3. n=3. n = 3. Thus, the number of possible samples which can be drawn without replacement is
( N n ) = ( 5 3 ) = 10 \dbinom{N}{n}=\dbinom{5}{3}=10 ( n N ) = ( 3 5 ) = 10
2.
S a m p l e S a m p l e S a m p l e m e a n N o . v a l u e s ( X ˉ ) 1 2 , 6 , 8 16 / 3 2 2 , 6 , 0 8 / 3 3 2 , 6 , 1 9 / 3 4 2 , 8 , 0 10 / 3 5 2 , 8 , 1 11 / 3 6 2 , 1 , 0 3 / 3 7 6 , 8 , 1 15 / 3 8 6 , 8 , 0 14 / 3 9 6 , 1 , 0 7 / 3 10 8 , 1 , 0 9 / 3 \def\arraystretch{1.5}
\begin{array}{c:c:c}
Sample & Sample & Sample \ mean \\
No. & values & (\bar{X}) \\ \hline
1 & 2,6, 8 & 16/3 \\
\hdashline
2 & 2,6,0 & 8/3 \\
\hdashline
3 & 2,6,1 & 9/3 \\
\hdashline
4 & 2,8,0 & 10/3\\
\hdashline
5 & 2,8,1 & 11/3 \\
\hdashline
6 & 2,1,0 & 3/3 \\
\hline
7 & 6,8,1 & 15/3 \\
\hline
8 & 6,8,0 & 14/3 \\
\hline
9 & 6,1,0 & 7/3 \\
\hline
10 & 8,1,0 & 9/3 \\
\hline
\hline
\end{array} S am pl e N o . 1 2 3 4 5 6 7 8 9 10 S am pl e v a l u es 2 , 6 , 8 2 , 6 , 0 2 , 6 , 1 2 , 8 , 0 2 , 8 , 1 2 , 1 , 0 6 , 8 , 1 6 , 8 , 0 6 , 1 , 0 8 , 1 , 0 S am pl e m e an ( X ˉ ) 16/3 8/3 9/3 10/3 11/3 3/3 15/3 14/3 7/3 9/3
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 3 / 3 1 1 / 10 3 / 30 9 / 90 7 / 3 1 1 / 10 7 / 30 49 / 90 8 / 3 1 1 / 10 8 / 30 64 / 90 9 / 3 2 2 / 10 18 / 30 162 / 90 10 / 3 1 1 / 10 10 / 30 100 / 90 11 / 3 1 1 / 10 11 / 30 121 / 90 14 / 3 1 1 / 10 14 / 30 196 / 90 15 / 3 1 1 / 10 15 / 30 225 / 90 16 / 3 1 1 / 10 16 / 30 256 / 90 T o t a l 10 1 102 / 30 1182 / 90 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline
3/3 & 1& 1/10 & 3/30 & 9/90 \\
\hdashline
7/3 & 1 & 1/10 & 7/30 & 49/90 \\
\hdashline
8/3 & 1 & 1/10 & 8/30 & 64/90 \\
\hdashline
9/3 & 2 & 2/10 & 18/30 & 162/90 \\
\hdashline
10/3 & 1 & 1/10 & 10/30 & 100/90 \\
\hdashline
11/3 & 1& 1/10 & 11/30 & 121/90 \\
\hdashline
14/3 & 1& 1/10 & 14/30 & 196/90 \\
\hdashline
15/3 & 1& 1/10 & 15/30 & 225/90 \\
\hdashline
16/3 & 1& 1/10 & 16/30 & 256/90 \\
\hdashline
Total & 10 & 1 & 102/30 & 1182/90 \\ \hline
\end{array} X ˉ 3/3 7/3 8/3 9/3 10/3 11/3 14/3 15/3 16/3 T o t a l f 1 1 1 2 1 1 1 1 1 10 f ( X ˉ ) 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1/10 1/10 1 X ˉ f ( X ˉ ) 3/30 7/30 8/30 18/30 10/30 11/30 14/30 15/30 16/30 102/30 X ˉ 2 f ( X ˉ ) 9/90 49/90 64/90 162/90 100/90 121/90 196/90 225/90 256/90 1182/90
3.
Mean
μ = 2 + 6 + 8 + 0 + 1 5 = 3.4 \mu=\dfrac{2+6+8+0+1}{5}=3.4 μ = 5 2 + 6 + 8 + 0 + 1 = 3.4
E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 102 30 = 3.4 E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{102}{30}=3.4 E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 30 102 = 3.4 The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
E ( X ˉ ) = 3.4 = μ E(\bar{X})=3.4=\mu E ( X ˉ ) = 3.4 = μ
4.
Variance
σ 2 = 1 5 ( ( 2 − 3.4 ) 2 + ( 6 − 2.4 ) 2 + ( 8 − 3.4 ) 2 \sigma^2=\dfrac{1}{5}\big((2-3.4)^2+(6-2.4)^2+(8-3.4)^2 σ 2 = 5 1 ( ( 2 − 3.4 ) 2 + ( 6 − 2.4 ) 2 + ( 8 − 3.4 ) 2 ( 0 − 3.4 ) 2 + ( 1 − 3.4 ) 2 ) = 9.44 (0-3.4)^2+(1-3.4)^2\big)=9.44 ( 0 − 3.4 ) 2 + ( 1 − 3.4 ) 2 ) = 9.44
Standard deviation
σ = σ 2 = 9.44 ≈ 3.0725 \sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.0725 σ = σ 2 = 9.44 ≈ 3.0725
V a r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2 Va r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2
= 1182 90 − ( 102 30 ) 2 = 118 75 ≈ 1.573333 =\dfrac{1182}{90}-(\dfrac{102}{30})^2=\dfrac{118}{75}\approx1.573333 = 90 1182 − ( 30 102 ) 2 = 75 118 ≈ 1.573333
V a r ( X ˉ ) = 118 75 ≈ 1.254326 \sqrt{Var(\bar{X})}=\sqrt{\dfrac{118}{75}}\approx1.254326 Va r ( X ˉ ) = 75 118 ≈ 1.254326 Verification:
V a r ( X ˉ ) = σ 2 n ( N − n N − 1 ) = 9.44 3 ( 5 − 3 5 − 1 ) Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{9.44}{3}(\dfrac{5-3}{5-1}) Va r ( X ˉ ) = n σ 2 ( N − 1 N − n ) = 3 9.44 ( 5 − 1 5 − 3 ) = 9.44 6 = 118 75 ≈ 1.573333 , T r u e =\dfrac{9.44}{6}=\dfrac{118}{75}\approx1.573333, True = 6 9.44 = 75 118 ≈ 1.573333 , T r u e
Comments