Question #201951

A population consists of the five measurements 2, 6, 8, 0, and 1.



1. How many different samples of size 3 can be drawn from the population (no replacement)?

2. Construct the sampling distribution of the sample means.

3. What is the mean of the sampling distribution of the sample means UX?

4. What is the standard deviation of the sampling distribution of the sample means?


1
Expert's answer
2021-06-03T03:53:46-0400

 1.

We have population values 2,6,8,0,12,6,8,0,1 population size N=5N=5 and sample size n=3.n=3.Thus, the number of possible samples which can be drawn without replacement is


(Nn)=(53)=10\dbinom{N}{n}=\dbinom{5}{3}=10


2.


SampleSampleSample meanNo.values(Xˉ)12,6,816/322,6,08/332,6,19/342,8,010/352,8,111/362,1,03/376,8,115/386,8,014/396,1,07/3108,1,09/3\def\arraystretch{1.5} \begin{array}{c:c:c} Sample & Sample & Sample \ mean \\ No. & values & (\bar{X}) \\ \hline 1 & 2,6, 8 & 16/3 \\ \hdashline 2 & 2,6,0 & 8/3 \\ \hdashline 3 & 2,6,1 & 9/3 \\ \hdashline 4 & 2,8,0 & 10/3\\ \hdashline 5 & 2,8,1 & 11/3 \\ \hdashline 6 & 2,1,0 & 3/3 \\ \hline 7 & 6,8,1 & 15/3 \\ \hline 8 & 6,8,0 & 14/3 \\ \hline 9 & 6,1,0 & 7/3 \\ \hline 10 & 8,1,0 & 9/3 \\ \hline \hline \end{array}





Xˉff(Xˉ)Xˉf(Xˉ)Xˉ2f(Xˉ)3/311/103/309/907/311/107/3049/908/311/108/3064/909/322/1018/30162/9010/311/1010/30100/9011/311/1011/30121/9014/311/1014/30196/9015/311/1015/30225/9016/311/1016/30256/90Total101102/301182/90\def\arraystretch{1.5} \begin{array}{c:c:c:c:c} \bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline 3/3 & 1& 1/10 & 3/30 & 9/90 \\ \hdashline 7/3 & 1 & 1/10 & 7/30 & 49/90 \\ \hdashline 8/3 & 1 & 1/10 & 8/30 & 64/90 \\ \hdashline 9/3 & 2 & 2/10 & 18/30 & 162/90 \\ \hdashline 10/3 & 1 & 1/10 & 10/30 & 100/90 \\ \hdashline 11/3 & 1& 1/10 & 11/30 & 121/90 \\ \hdashline 14/3 & 1& 1/10 & 14/30 & 196/90 \\ \hdashline 15/3 & 1& 1/10 & 15/30 & 225/90 \\ \hdashline 16/3 & 1& 1/10 & 16/30 & 256/90 \\ \hdashline Total & 10 & 1 & 102/30 & 1182/90 \\ \hline \end{array}



3.

Mean


μ=2+6+8+0+15=3.4\mu=\dfrac{2+6+8+0+1}{5}=3.4




E(Xˉ)=Xˉf(Xˉ)=10230=3.4E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{102}{30}=3.4

The mean of the sampling distribution of the sample means is equal to the

the mean of the population.



E(Xˉ)=3.4=μE(\bar{X})=3.4=\mu


4.

Variance


σ2=15((23.4)2+(62.4)2+(83.4)2\sigma^2=\dfrac{1}{5}\big((2-3.4)^2+(6-2.4)^2+(8-3.4)^2(03.4)2+(13.4)2)=9.44(0-3.4)^2+(1-3.4)^2\big)=9.44


Standard deviation



σ=σ2=9.443.0725\sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.0725




Var(Xˉ)=Xˉ2f(Xˉ)(Xˉf(Xˉ))2Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2




=118290(10230)2=118751.573333=\dfrac{1182}{90}-(\dfrac{102}{30})^2=\dfrac{118}{75}\approx1.573333




Var(Xˉ)=118751.254326\sqrt{Var(\bar{X})}=\sqrt{\dfrac{118}{75}}\approx1.254326

Verification:


Var(Xˉ)=σ2n(NnN1)=9.443(5351)Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{9.44}{3}(\dfrac{5-3}{5-1})=9.446=118751.573333,True=\dfrac{9.44}{6}=\dfrac{118}{75}\approx1.573333, True


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS