Question #173484

10 (b) Find the mean and variance of binomial distribution.


1
Expert's answer
2021-03-31T16:15:44-0400

Solution:

Let X be the random variable following binomial distribution with parameters n and p.

XB(n,p)X\sim B(n,p)

First, we find the mean or expectation of X.

From the definition of expectation:

E(X)=xPr(X=x)\mathrm{E}(X)=\sum x \operatorname{Pr}(X=x)

Thus:

E(X)=k=0nk(nk)pkqnk\mathrm{E}(X)=\sum_{k=0}^{n} k\left(\begin{array}{l} n \\ k \end{array}\right) p^{k} q^{n-k} [Definition of Binomial Distribution, with p+q=1p+q=1 ]=k=1nk(nk)=\sum_{k=1}^{n} k\left(\begin{array}{l} n \\ k \end{array}\right) pkqnk[k=0,k(nk)pkqnk=0]p^{k} q^{n-k} \quad [\because k=0, k\left(\begin{array}{l}n \\ k \end{array}\right) p^{k} q^{n-k}=0]

=k=1nn(n1k1)pkqnk=\sum_{k=1}^{n} n\left(\begin{array}{l} n-1 \\ k-1 \end{array}\right) p^{k} q^{n-k}

[Factors of Binomial Coefficient:k(nk)=n(n1k1)][\text{Factors of Binomial Coefficient}: k\left(\begin{array}{l}n \\ k\end{array}\right)=n\left(\begin{array}{l}n-1 \\ k-1\end{array}\right)]

=npk=1n(n1k1)pk1q(n1)(k1) taking out np and using (n1)=npj=0m(mj)pjqmj putting m=n1,j=k1\begin{array}{l} =n p \sum_{k=1}^{n}\left(\begin{array}{l} n-1 \\ k-1 \end{array}\right) p^{k-1} q^{(n-1)-(k-1)} \quad \text { taking out } n p \text { and using }(n-1) \\ =n p \sum_{j=0}^{m}\left(\begin{array}{c} m \\ j \end{array}\right) p^{j} q^{m-j} \quad \text { putting } m=n-1, j=k-1 \end{array}

=np=n p [Binomial Theorem and p+q=1p+q=1]

Now, we find variance.

E(X2)=x2Pr(X=x)\mathrm{E}(X^2)=\sum x^2 \operatorname{Pr}(X=x)

E(X2)=k0nk2(nk)pkqnk=k=0nkn(n1k1)pkqnk=npk=1nk(n1k1)pk1q(n1)(k1)=npj=0m(j+1)(mj)pjqmj=np(j=0mj(mj)pjqmj+j=0m(mj)pjqmj)=np(j=0mm(m1j1)pjqmj+j=0m(mj)pjqmj)=np((n1)pj=1m(m1j1)pj1q(m1)(j1)+j=0m(mj)pjqmj)=np((n1)p+1)=n2p2+np(1p)\begin{aligned} \mathrm{E}\left(X^{2}\right) &=\sum_{k \geq 0}^{n} k^{2}\left(\begin{array}{l} n \\ k \end{array}\right) p^{k} q^{n-k} \\ &=\sum_{k=0}^{n} k n\left(\begin{array}{c} n-1 \\ k-1 \end{array}\right) p^{k} q^{n-k} \\ &=n p \sum_{k=1}^{n} k\left(\begin{array}{c} n-1 \\ k-1 \end{array}\right) p^{k-1} q^{(n-1)-(k-1)} \\ &=n p \sum_{j=0}^{m}(j+1)\left(\begin{array}{c} m \\ j \end{array}\right) p^{j} q^{m-j} \\ &=n p\left(\sum_{j=0}^{m} j\left(\begin{array}{c} m \\ j \end{array}\right) p^{j} q^{m-j}+\sum_{j=0}^{m}\left(\begin{array}{c} m \\ j \end{array}\right) p^{j} q^{m-j}\right) \\ &=n p\left(\sum_{j=0}^{m} m\left(\begin{array}{c} m-1 \\ j-1 \end{array}\right) p^{j} q^{m-j}+\sum_{j=0}^{m}\left(\begin{array}{c} m \\ j \end{array}\right) p^{j} q^{m-j}\right) \\ &=n p\left((n-1) p \sum_{j=1}^{m}\left(\begin{array}{c} m-1 \\ j-1 \end{array}\right) p^{j-1} q^{(m-1)-(j-1)}+\sum_{j=0}^{m}\left(\begin{array}{c} m \\ j \end{array}\right) p^{j} q^{m-j}\right) \\ &=n p((n-1) p+1) \\ &=n^{2} p^{2}+n p(1-p) \end{aligned}

Now, var(X)=E(X2)(E(X))2var(X)=E(X^2)-(E(X))^2

=n2p2+np(1p)(np)2=n2p2+np(1p)n2p2=np(1p)=n^2p^2+np(1-p)-(np)^2 \\ =n^2p^2+np(1-p)-n^2p^2 \\=np(1-p)

Hence, mean = np, variance = np(1-p).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS