Solution:
Let X be the random variable following binomial distribution with parameters n and p.
X∼B(n,p)
First, we find the mean or expectation of X.
From the definition of expectation:
E(X)=∑xPr(X=x)
Thus:
E(X)=∑k=0nk(nk)pkqn−k [Definition of Binomial Distribution, with p+q=1 ]=∑k=1nk(nk) pkqn−k[∵k=0,k(nk)pkqn−k=0]
=∑k=1nn(n−1k−1)pkqn−k
[Factors of Binomial Coefficient:k(nk)=n(n−1k−1)]
=np∑k=1n(n−1k−1)pk−1q(n−1)−(k−1) taking out np and using (n−1)=np∑j=0m(mj)pjqm−j putting m=n−1,j=k−1
=np [Binomial Theorem and p+q=1]
Now, we find variance.
E(X2)=∑x2Pr(X=x)
E(X2)=k≥0∑nk2(nk)pkqn−k=k=0∑nkn(n−1k−1)pkqn−k=npk=1∑nk(n−1k−1)pk−1q(n−1)−(k−1)=npj=0∑m(j+1)(mj)pjqm−j=np(j=0∑mj(mj)pjqm−j+j=0∑m(mj)pjqm−j)=np(j=0∑mm(m−1j−1)pjqm−j+j=0∑m(mj)pjqm−j)=np((n−1)pj=1∑m(m−1j−1)pj−1q(m−1)−(j−1)+j=0∑m(mj)pjqm−j)=np((n−1)p+1)=n2p2+np(1−p)
Now, var(X)=E(X2)−(E(X))2
=n2p2+np(1−p)−(np)2=n2p2+np(1−p)−n2p2=np(1−p)
Hence, mean = np, variance = np(1-p).
Comments