10 (b) Find the mean and variance of binomial distribution.
Solution:
Let X be the random variable following binomial distribution with parameters n and p.
"X\\sim B(n,p)"
First, we find the mean or expectation of X.
From the definition of expectation:
"\\mathrm{E}(X)=\\sum x \\operatorname{Pr}(X=x)"
Thus:
"\\mathrm{E}(X)=\\sum_{k=0}^{n} k\\left(\\begin{array}{l}\n\nn \\\\\n\nk\n\n\\end{array}\\right) p^{k} q^{n-k}" [Definition of Binomial Distribution, with "p+q=1" ]"=\\sum_{k=1}^{n} k\\left(\\begin{array}{l}\n\nn \\\\\n\nk\n\n\\end{array}\\right)" "p^{k} q^{n-k} \\quad [\\because k=0, k\\left(\\begin{array}{l}n \\\\\nk\n\\end{array}\\right) p^{k} q^{n-k}=0]"
"=\\sum_{k=1}^{n} n\\left(\\begin{array}{l}\nn-1 \\\\\nk-1\n\\end{array}\\right) p^{k} q^{n-k}"
"[\\text{Factors of Binomial Coefficient}: k\\left(\\begin{array}{l}n \\\\ k\\end{array}\\right)=n\\left(\\begin{array}{l}n-1 \\\\ k-1\\end{array}\\right)]"
"\\begin{array}{l}\n=n p \\sum_{k=1}^{n}\\left(\\begin{array}{l}\nn-1 \\\\\nk-1\n\\end{array}\\right) p^{k-1} q^{(n-1)-(k-1)} \\quad \\text { taking out } n p \\text { and using }(n-1) \\\\\n=n p \\sum_{j=0}^{m}\\left(\\begin{array}{c}\nm \\\\\nj\n\\end{array}\\right) p^{j} q^{m-j} \\quad \\text { putting } m=n-1, j=k-1\n\\end{array}"
"=n p" [Binomial Theorem and "p+q=1"]
Now, we find variance.
"\\mathrm{E}(X^2)=\\sum x^2 \\operatorname{Pr}(X=x)"
"\\begin{aligned}\n\\mathrm{E}\\left(X^{2}\\right) &=\\sum_{k \\geq 0}^{n} k^{2}\\left(\\begin{array}{l}\nn \\\\\nk\n\\end{array}\\right) p^{k} q^{n-k} \\\\\n&=\\sum_{k=0}^{n} k n\\left(\\begin{array}{c}\nn-1 \\\\\nk-1\n\\end{array}\\right) p^{k} q^{n-k} \\\\\n&=n p \\sum_{k=1}^{n} k\\left(\\begin{array}{c}\nn-1 \\\\\nk-1\n\\end{array}\\right) p^{k-1} q^{(n-1)-(k-1)} \\\\\n&=n p \\sum_{j=0}^{m}(j+1)\\left(\\begin{array}{c}\nm \\\\\nj\n\\end{array}\\right) p^{j} q^{m-j} \\\\\n&=n p\\left(\\sum_{j=0}^{m} j\\left(\\begin{array}{c}\nm \\\\\nj\n\\end{array}\\right) p^{j} q^{m-j}+\\sum_{j=0}^{m}\\left(\\begin{array}{c}\nm \\\\\nj\n\\end{array}\\right) p^{j} q^{m-j}\\right) \\\\\n&=n p\\left(\\sum_{j=0}^{m} m\\left(\\begin{array}{c}\nm-1 \\\\\nj-1\n\\end{array}\\right) p^{j} q^{m-j}+\\sum_{j=0}^{m}\\left(\\begin{array}{c}\nm \\\\\nj\n\\end{array}\\right) p^{j} q^{m-j}\\right) \\\\\n&=n p\\left((n-1) p \\sum_{j=1}^{m}\\left(\\begin{array}{c}\nm-1 \\\\\nj-1\n\\end{array}\\right) p^{j-1} q^{(m-1)-(j-1)}+\\sum_{j=0}^{m}\\left(\\begin{array}{c}\nm \\\\\nj\n\\end{array}\\right) p^{j} q^{m-j}\\right) \\\\\n&=n p((n-1) p+1) \\\\\n&=n^{2} p^{2}+n p(1-p)\n\\end{aligned}"
Now, "var(X)=E(X^2)-(E(X))^2"
"=n^2p^2+np(1-p)-(np)^2\n\\\\ =n^2p^2+np(1-p)-n^2p^2\n\\\\=np(1-p)"
Hence, mean = np, variance = np(1-p).
Comments
Leave a comment