9. (a) Let X be a binomial variate with n =100, p = .1.0 Find the approximate value of
P 10( ≤ X ≤12) using: (5)
(i) normal distribution
(ii)poisson distribution
[You may like to use the following values.
P(Z ≤ 67.0 ) = .0 7486, P(Z ≤ 33.0 ) = .0 6293, P(Z ≤ )0 = ]5.0
i)
"\\mu=np=100\\cdot0.1=10"
"\\sigma=\\sqrt{np(1-p)}=\\sqrt{100\\cdot0.1(1-0.1)}=3"
"P(10 \\leq X \\leq12)\\approx P(9.5 \\leq Y \\leq12.5)="
"=P(\\frac{9.5-10}{3} \\leq Z\\leq\\frac{12.5-10}{3})=P(-0.17\\leq Z\\leq0.83)="
"=0.7967-0.4325=0.3642"
ii)
"\\lambda=np=10"
"P(X=k)=\\frac{\\lambda^ke^{-\\lambda}}{k!}"
"P(10 \\leq X \\leq12)=P(X=10)+P(X=11)+P(X=12)"
"P(X=10)=\\frac{10^{10}e^{-10}}{10!}=0.1251"
"P(X=11)=\\frac{10^{11}e^{-10}}{11!}=0.1137"
"P(X=12)=\\frac{10^{12}e^{-10}}{12!}=0.0948"
"P(10 \\leq X \\leq12)=0.1251+0.1137+0.0948=0.3336"
Comments
Leave a comment