7(b) Let X X Xn
, , , 1 2 K be random sample of size n from a distribution with probability
density function
θ < < θ >
=
θ−
,0 else where.
0, ,1 0
( )0,;
1 X X
f X Obtain a maximum likeyhood
estimator of θ.
Given probability distribution function is-
"f(x;\u03b8)=\u03b8^{\u22121}_2e^{\u2212\\dfrac{(x\u2212\u03b8_1)}{\u03b8_2}}"
. The likelihood function is the density function regarded as a function of θ.
"L(\u03b8|x) = f(x|\u03b8), \u03b8 \u2208 \u0398. (1)"
The maximum likelihood estimator (MLE),
"\\hat{\u03b8}(x) = arg maxL(\u03b8|x)."
for "x>\u03b8_1,\u03b8_2>0" Likelihood:
"L(\u03b8)=L(\u03b8\u2223X_1,X_2,\u2026,X_n)=\u220f_{i=1}^n\\dfrac{e^{\\dfrac{\u2212(x_i\u2212\u03b8_1)}{\u03b8_2}}}{\u03b8_2}"
factored out "\u03b8_2" as well as turned to product into a summation to get:
"=\\dfrac{1}{\u03b8^n_2}e^{\u2211^n_{i=1}}\\dfrac{\u2212(x_i\u2212\u03b8_1)}{\u03b8_2}"
"\u2113(\u03b8)=ln(L(\u03b8))=\\dfrac{1}{\u03b8^n_2}e^{\u2211^n_{i=1}}\\dfrac{\u2212(x_i\u2212\u03b8_1)}{\u03b8_2}"
"=ln(\u03b8^{\u2212n}_2)+\u2211_{i=1}^n\u2212\\dfrac{(x_i\u2212\u03b8_1)}{\u03b8_2}"
"=\u2212nln(\u03b8_2)\u2212\\dfrac{\u2211^n_{i=1}x_i\u2212n\u03b8_1}{\u03b8_2}"
"=\u2212nln(\u03b8_2)\u2212\\dfrac{\u2211^n_{i=1}x_i}{\u03b8_2}+\\dfrac{n\u03b8_1}{\\theta_2}"
Comments
Leave a comment