Given probability distribution function is-
f(x;θ)=θ2−1e−θ2(x−θ1)
. The likelihood function is the density function regarded as a function of θ.
L(θ∣x)=f(x∣θ),θ∈Θ.(1)
The maximum likelihood estimator (MLE),
θ^(x)=argmaxL(θ∣x).
for x>θ1,θ2>0 Likelihood:
L(θ)=L(θ∣X1,X2,…,Xn)=∏i=1nθ2eθ2−(xi−θ1)
factored out θ2 as well as turned to product into a summation to get:
=θ2n1e∑i=1nθ2−(xi−θ1)
ℓ(θ)=ln(L(θ))=θ2n1e∑i=1nθ2−(xi−θ1)
=ln(θ2−n)+∑i=1n−θ2(xi−θ1)
=−nln(θ2)−θ2∑i=1nxi−nθ1
=−nln(θ2)−θ2∑i=1nxi+θ2nθ1
Comments