Answer to Question #173473 in Statistics and Probability for ANJU JAYACHANDRAN

Question #173473

5(b) For the given bivariate probability distribution of X and Y : (5) 

 

32

( , )

2

x y

P X x Y y

+

= = = for x = 3,2,1,0 and y = .1,0

 Find: 

 (i) P(X ≤ ,1 Y = )1

 (ii) P(X ≤ )1

 (iii) P(Y > )0 and 

 (iv) P(Y = |1 X = )3 



1
Expert's answer
2021-03-24T15:01:18-0400



(i) P(X,1Y=1)=PXY(1,1)=0P(X \le ,1 Y =1)=P_{XY}(1,1)=0


(ii) P(X1)=PXY(1,2)+PXY(1,4)+PXY(1,5)P(X\le 1)=P_{XY}(1,2)+P_{XY}(1,4)+P_{XY}(1,5)


=112+124+124=2+1+124=424=16=\dfrac{1}{12}+\dfrac{1}{24}+\dfrac{1}{24}=\dfrac{2+1+1}{24}=\dfrac{4}{24}=\dfrac{1}{6}


(iii) P(Y>0)=PXY(2,1)+PXY(2,2)+PXY(2,3)+PXY(4,1)+PXY(4,2)+PXY(4,3)+PXY(5,1)+PXY(5,2)+PXY(5,3)P(Y>0)=P_{XY}(2,1)+P_{XY}(2,2)+P_{XY}(2,3)+P_{XY}(4,1)+P_{XY}(4,2)+P_{XY}(4,3)+P_{XY}(5,1)+P_{XY}(5,2)+P_{XY}(5,3)


=112+16+14+124+112+18+124+18+112=\dfrac{1}{12}+\dfrac{1}{6}+\dfrac{1}{4}+\dfrac{1}{24}+\dfrac{1}{12}+\dfrac{1}{8}+\dfrac{1}{24}+\dfrac{1}{8}+\dfrac{1}{12}

=2+4+6+1+2+3+1+3+224=2424=1=\dfrac{2+4+6+1+2+3+1+3+2}{24}=\dfrac{24}{24}=1


(iv) P(Y=1X=3)=P(X=3,Y=1)P(X=3)P(Y=1|X=3)=\dfrac{P(X=3,Y=1)}{P(X=3)}


=PXY(3,1)PX(3)=\dfrac{P_{XY}(3,1)}{P_X(3)}


=0PX(0)=0=\dfrac{0}{P_{X}(0)}=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment