5(b) For the given bivariate probability distribution of X and Y : (5)
32
( , )
2
x y
P X x Y y
+
= = = for x = 3,2,1,0 and y = .1,0
Find:
(i) P(X ≤ ,1 Y = )1
(ii) P(X ≤ )1
(iii) P(Y > )0 and
(iv) P(Y = |1 X = )3
(i) "P(X \\le ,1 Y =1)=P_{XY}(1,1)=0"
(ii) "P(X\\le 1)=P_{XY}(1,2)+P_{XY}(1,4)+P_{XY}(1,5)"
"=\\dfrac{1}{12}+\\dfrac{1}{24}+\\dfrac{1}{24}=\\dfrac{2+1+1}{24}=\\dfrac{4}{24}=\\dfrac{1}{6}"
(iii) "P(Y>0)=P_{XY}(2,1)+P_{XY}(2,2)+P_{XY}(2,3)+P_{XY}(4,1)+P_{XY}(4,2)+P_{XY}(4,3)+P_{XY}(5,1)+P_{XY}(5,2)+P_{XY}(5,3)"
"=\\dfrac{1}{12}+\\dfrac{1}{6}+\\dfrac{1}{4}+\\dfrac{1}{24}+\\dfrac{1}{12}+\\dfrac{1}{8}+\\dfrac{1}{24}+\\dfrac{1}{8}+\\dfrac{1}{12}"
"=\\dfrac{2+4+6+1+2+3+1+3+2}{24}=\\dfrac{24}{24}=1"
(iv) "P(Y=1|X=3)=\\dfrac{P(X=3,Y=1)}{P(X=3)}"
"=\\dfrac{P_{XY}(3,1)}{P_X(3)}"
"=\\dfrac{0}{P_{X}(0)}=0"
Comments
Leave a comment