Question #173480

8(b) For 25 army personnels, line of regression of weight of kidneys (Y) on weight of 

heart (X ) is Y = .0 399X + .6 934 and the line of regression of weight of heart on 

weight of kidney is X − .1 212Y + .2 461= .0 Find the correlation coefficient between 

X and Y and their mean values.


1
Expert's answer
2021-03-29T10:57:56-0400

Rewrite the regression equations uniformly


Y=.0399X+.6934Y = .0 399X + .6 934

X=.1212Y.2461X = .1 212Y - .2 461


Denote mean values as x\overline{x} and y\overline{y}, correlation coefficient as rr, standard deviations as sxs_x and sys_y. Then the basic formulas are


Y=rsysxXrsysxx+yY=r\dfrac{s_y}{s_x}X-r\dfrac{s_y}{s_x}\overline{x}+\overline{y}


X=rsxsyYrsxsyy+xX=r\dfrac{s_x}{s_y}Y-r\dfrac{s_x}{s_y}\overline{y}+\overline{x}


So find correlation coefficient from following


{rsysx=.0399rsxsy=.1212\left\{\begin{array}{rr}r\dfrac{s_y}{s_x}=.0 399\\ \\ r\dfrac{s_x}{s_y}= .1 212\end{array}\right.


Multiply the equations


rsysxrsxsy=.0399.1212r\dfrac{s_y}{s_x}\cdot r\dfrac{s_x}{s_y}=.0 399 \cdot .1 212 \Rightarrow r2=.00483588r^2=.00483588


Thus

r=.00483588=.069540492r=\sqrt{.00483588}=.069540492


Further, find mean values from


rsysxx+y=.6934-r\dfrac{s_y}{s_x}\overline{x}+\overline{y}= .6 934


rsxsyy+x=.2461-r\dfrac{s_x}{s_y}\overline{y}+\overline{x}=- .2 461


or


.0399x+y=.6934- .0 399\overline{x}+\overline{y}= .6 934

.1212y+x=.2461-.1 212\overline{y}+\overline{x}=- .2 461


Construct the system of linear equations and solve it using Cramer's rule


{.0399 x+ y=.6934x.1212 y=.2461\left\{\begin{array}{rrr}- .0 399\ \overline{x}&+\ \overline{y}=& .6 934\\ \overline{x}&-.1 212\ \overline{y}=&- .2 461\end{array}\right.


det(A)=.039911.1212=\det(A)= \begin{vmatrix} - .0 399 & 1 \\ 1 & -.1 212 \end{vmatrix}= .0399(.1212)11=-.0 399\cdot( -.1 212)-1\cdot1= .99516412-.99516412


det(Ax)=.69341.2461.1212=\det(A_x)= \begin{vmatrix} .6 934 & 1 \\ - .2 461 & -.1 212 \end{vmatrix}= .6934(.1212)1(.2461)=.6934\cdot( -.1 212)-1\cdot(-.2461)= .16205992.16205992


det(Ay)=.0399.69341.2461=\det(A_y)= \begin{vmatrix} - .0 399 & .6 934 \\ 1 & - .2 461 \end{vmatrix}= .0399(.2461).69341=-.0 399\cdot( -.2461)-.6934\cdot1= .68358061-.68358061


x=det(Ax)det(A)=.16205992.99516412=.162847431\overline{x}=\dfrac{\det(A_x)}{\det(A)}=\dfrac{.16205992}{-.99516412}=-.162847431


y=det(Ay)det(A)=.68358061.99516412=.686902388\overline{y}=\dfrac{\det(A_y)}{\det(A)}=\dfrac{-.68358061}{-.99516412}=.686902388


Answer


correlation coefficient

r=.0695r=.0695


mean values

x=.1628\overline{x}=-.1628

y=.6869\overline{y}=.6869


Remark. Weight must be positive. Perhaps condition is incorrect.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS