Rewrite the regression equations uniformly
Y=.0399X+.6934
X=.1212Y−.2461
Denote mean values as x and y, correlation coefficient as r, standard deviations as sx and sy. Then the basic formulas are
Y=rsxsyX−rsxsyx+y
X=rsysxY−rsysxy+x
So find correlation coefficient from following
⎩⎨⎧rsxsy=.0399rsysx=.1212
Multiply the equations
rsxsy⋅rsysx=.0399⋅.1212 ⇒ r2=.00483588
Thus
r=.00483588=.069540492
Further, find mean values from
−rsxsyx+y=.6934
−rsysxy+x=−.2461
or
−.0399x+y=.6934
−.1212y+x=−.2461
Construct the system of linear equations and solve it using Cramer's rule
{−.0399 xx+ y=−.1212 y=.6934−.2461
det(A)=∣∣−.039911−.1212∣∣= −.0399⋅(−.1212)−1⋅1= −.99516412
det(Ax)=∣∣.6934−.24611−.1212∣∣= .6934⋅(−.1212)−1⋅(−.2461)= .16205992
det(Ay)=∣∣−.03991.6934−.2461∣∣= −.0399⋅(−.2461)−.6934⋅1= −.68358061
x=det(A)det(Ax)=−.99516412.16205992=−.162847431
y=det(A)det(Ay)=−.99516412−.68358061=.686902388
Answer
correlation coefficient
r=.0695
mean values
x=−.1628
y=.6869
Remark. Weight must be positive. Perhaps condition is incorrect.
Comments