Rewrite the regression equations uniformly
Y=.0399X+.6934
X=.1212Y−.2461 
Denote mean values as x and  y,  correlation coefficient as r, standard deviations as sx and sy. Then the basic formulas are
Y=rsxsyX−rsxsyx+y 
X=rsysxY−rsysxy+x 
So find correlation coefficient from following
 ⎩⎨⎧rsxsy=.0399rsysx=.1212 
Multiply the equations
 rsxsy⋅rsysx=.0399⋅.1212   ⇒  r2=.00483588 
Thus
r=.00483588=.069540492 
Further, find mean values from
−rsxsyx+y=.6934 
−rsysxy+x=−.2461 
or
−.0399x+y=.6934 
−.1212y+x=−.2461 
Construct the system of linear equations and solve it using Cramer's rule
{−.0399 xx+ y=−.1212 y=.6934−.2461 
det(A)=∣∣−.039911−.1212∣∣= −.0399⋅(−.1212)−1⋅1= −.99516412 
det(Ax)=∣∣.6934−.24611−.1212∣∣= .6934⋅(−.1212)−1⋅(−.2461)= .16205992 
det(Ay)=∣∣−.03991.6934−.2461∣∣= −.0399⋅(−.2461)−.6934⋅1= −.68358061 
x=det(A)det(Ax)=−.99516412.16205992=−.162847431 
y=det(A)det(Ay)=−.99516412−.68358061=.686902388 
Answer
correlation coefficient
 r=.0695 
mean values
x=−.1628 
y=.6869 
Remark. Weight must be positive. Perhaps condition is incorrect.
Comments