8(b) For 25 army personnels, line of regression of weight of kidneys (Y) on weight of
heart (X ) is Y = .0 399X + .6 934 and the line of regression of weight of heart on
weight of kidney is X − .1 212Y + .2 461= .0 Find the correlation coefficient between
X and Y and their mean values.
Rewrite the regression equations uniformly
"Y = .0 399X + .6 934"
"X = .1 212Y - .2 461"
Denote mean values as "\\overline{x}" and "\\overline{y}", correlation coefficient as "r", standard deviations as "s_x" and "s_y". Then the basic formulas are
"Y=r\\dfrac{s_y}{s_x}X-r\\dfrac{s_y}{s_x}\\overline{x}+\\overline{y}"
"X=r\\dfrac{s_x}{s_y}Y-r\\dfrac{s_x}{s_y}\\overline{y}+\\overline{x}"
So find correlation coefficient from following
"\\left\\{\\begin{array}{rr}r\\dfrac{s_y}{s_x}=.0 399\\\\ \\\\ r\\dfrac{s_x}{s_y}= .1 212\\end{array}\\right."
Multiply the equations
"r\\dfrac{s_y}{s_x}\\cdot r\\dfrac{s_x}{s_y}=.0 399 \\cdot .1 212" "\\Rightarrow" "r^2=.00483588"
Thus
"r=\\sqrt{.00483588}=.069540492"
Further, find mean values from
"-r\\dfrac{s_y}{s_x}\\overline{x}+\\overline{y}= .6 934"
"-r\\dfrac{s_x}{s_y}\\overline{y}+\\overline{x}=- .2 461"
or
"- .0 399\\overline{x}+\\overline{y}= .6 934"
"-.1 212\\overline{y}+\\overline{x}=- .2 461"
Construct the system of linear equations and solve it using Cramer's rule
"\\left\\{\\begin{array}{rrr}- .0 399\\ \\overline{x}&+\\ \\overline{y}=& .6 934\\\\\n\\overline{x}&-.1 212\\ \\overline{y}=&- .2 461\\end{array}\\right."
"\\det(A)= \\begin{vmatrix}\n - .0 399 & 1 \\\\\n 1 & -.1 212\n\\end{vmatrix}=" "-.0 399\\cdot( -.1 212)-1\\cdot1=" "-.99516412"
"\\det(A_x)= \\begin{vmatrix}\n .6 934 & 1 \\\\\n - .2 461 & -.1 212\n\\end{vmatrix}=" ".6934\\cdot( -.1 212)-1\\cdot(-.2461)=" ".16205992"
"\\det(A_y)= \\begin{vmatrix}\n - .0 399 & .6 934 \\\\\n 1 & - .2 461\n\\end{vmatrix}=" "-.0 399\\cdot( -.2461)-.6934\\cdot1=" "-.68358061"
"\\overline{x}=\\dfrac{\\det(A_x)}{\\det(A)}=\\dfrac{.16205992}{-.99516412}=-.162847431"
"\\overline{y}=\\dfrac{\\det(A_y)}{\\det(A)}=\\dfrac{-.68358061}{-.99516412}=.686902388"
Answer
correlation coefficient
"r=.0695"
mean values
"\\overline{x}=-.1628"
"\\overline{y}=.6869"
Remark. Weight must be positive. Perhaps condition is incorrect.
Comments
Leave a comment