The pmf of random variable X
p(x)=x!e−λλx,forx=0,1,2,….
So moment generating function is given by-
MX(t)=E[etX]=∑x=0∞etx⋅x!e−λλx=e−λ∑x=0∞x!(etλ)x=e−λ(eetλ)=eλ(et−1)
.
Now we take the first and second derivatives of MX(t). Remember we are differentiating with respect to t :
MX′(t)=dtd[eλ(et−1)]=λeteλ(et−1)
M′′X(t)=dtd[λeteλ(et−1)]=λeteλ(et−1)+λ2e2teλ(et−1)
Next we evaluate the derivatives at t=0 to find the first and second moments of X :
E[X]=MX′(0)
E[X2]=MX′′(0)=λe0eλ(e0−1)=λ=λe0eλ(e0−1)+λ2e0eλ(e0−1)=λ+λ2
Finally, in order to find the variance, we use the alternate formula:
Var(X)=E[X2]−(E[X])2=λ+λ2−λ2=λ.
Comments
Leave a comment