Answer to Question #173482 in Statistics and Probability for ANJU JAYACHANDRAN

Question #173482

9 b) For the given distribution: (5) 

 ; ,2,1,0 ,

3

1

3

2

( )  = K

P X = x = x

x

 find moment generating function, mean and 

variance of X.


1
Expert's answer
2021-03-30T07:30:20-0400

The pmf of random variable X 

p(x)=eλλxx!,forx=0,1,2,.p(x)=\dfrac{e^{−λ}λ^x}{x!} ,for x=0,1,2,….

 

So moment generating function is given by-


MX(t)=E[etX]=x=0etxeλλxx!=eλx=0(etλ)xx!=eλ(eetλ)=eλ(et1)M_X(t)=E[e^{tX}]=∑_{x=0}^∞e^{tx}⋅\dfrac{e^{−λ}λ^x}{x!}=e^{−λ}∑_{x=0}^∞\dfrac{(e^{tλ})^x}{x!}=e^{−λ}(e^{e^{t}λ})=e^{λ(e^t−1)}

.

 


Now we take the first and second derivatives of  MX(t).M_X(t) . Remember we are differentiating with respect to t :


MX(t)=ddt[eλ(et1)]=λeteλ(et1)M'_X(t)=\dfrac{d}{dt}[e^{λ(e^t−1)}]=λe^te^{λ(e^t−1)}

 

MX(t)=ddt[λeteλ(et1)]=λeteλ(et1)+λ2e2teλ(et1)M''X(t)=\dfrac{d}{dt}[λe^te^{λ(e^t−1)}]=λe^te^{λ(e^t−1)}+λ^2e^{2t}e^{λ(e^t−1)}


Next we evaluate the derivatives at t=0 to find the first and second moments of X :


E[X]=MX(0)E[X]=M'_X(0)


E[X2]=MX(0)=λe0eλ(e01)=λ=λe0eλ(e01)+λ2e0eλ(e01)=λ+λ2E[X^2]=M''_X(0)=λe^0e^{λ(e^0−1)}=λ=λe^0e^{λ(e^0−1)}+λ^2e^0e^{λ(e^0−1)}=λ+λ^2

 


Finally, in order to find the variance, we use the alternate formula:


Var(X)=E[X2](E[X])2=λ+λ2λ2=λ.Var(X)=E[X^2]−(E[X])^2=λ+λ^2−λ^2=λ.

 



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment