9 b) For the given distribution: (5)Â
 ; ,2,1,0 ,
3
1
3
2
( )  = K



ï£

P X = x = x
x
 find moment generating function, mean andÂ
variance of X.
The pmf of random variable XÂ
"p(x)=\\dfrac{e^{\u2212\u03bb}\u03bb^x}{x!} ,for x=0,1,2,\u2026."
Â
So moment generating function is given by-
"M_X(t)=E[e^{tX}]=\u2211_{x=0}^\u221ee^{tx}\u22c5\\dfrac{e^{\u2212\u03bb}\u03bb^x}{x!}=e^{\u2212\u03bb}\u2211_{x=0}^\u221e\\dfrac{(e^{t\u03bb})^x}{x!}=e^{\u2212\u03bb}(e^{e^{t}\u03bb})=e^{\u03bb(e^t\u22121)}"
.
Â
Now we take the first and second derivatives of "M_X(t) ." Remember we are differentiating with respect to t :
"M'_X(t)=\\dfrac{d}{dt}[e^{\u03bb(e^t\u22121)}]=\u03bbe^te^{\u03bb(e^t\u22121)}"
Â
"M''X(t)=\\dfrac{d}{dt}[\u03bbe^te^{\u03bb(e^t\u22121)}]=\u03bbe^te^{\u03bb(e^t\u22121)}+\u03bb^2e^{2t}e^{\u03bb(e^t\u22121)}"
Next we evaluate the derivatives at t=0 to find the first and second moments of X :
"E[X]=M'_X(0)"
"E[X^2]=M''_X(0)=\u03bbe^0e^{\u03bb(e^0\u22121)}=\u03bb=\u03bbe^0e^{\u03bb(e^0\u22121)}+\u03bb^2e^0e^{\u03bb(e^0\u22121)}=\u03bb+\u03bb^2"
Â
Finally, in order to find the variance, we use the alternate formula:
"Var(X)=E[X^2]\u2212(E[X])^2=\u03bb+\u03bb^2\u2212\u03bb^2=\u03bb."
Â
Comments
Leave a comment