Answer to Question #173482 in Statistics and Probability for ANJU JAYACHANDRAN

Question #173482

9 b) For the given distribution: (5) 

 ; ,2,1,0 ,

3

1

3

2

( )  = K











P X = x = x

x

 find moment generating function, mean and 

variance of X.


1
Expert's answer
2021-03-30T07:30:20-0400

The pmf of random variable X 

"p(x)=\\dfrac{e^{\u2212\u03bb}\u03bb^x}{x!} ,for x=0,1,2,\u2026."

 

So moment generating function is given by-


"M_X(t)=E[e^{tX}]=\u2211_{x=0}^\u221ee^{tx}\u22c5\\dfrac{e^{\u2212\u03bb}\u03bb^x}{x!}=e^{\u2212\u03bb}\u2211_{x=0}^\u221e\\dfrac{(e^{t\u03bb})^x}{x!}=e^{\u2212\u03bb}(e^{e^{t}\u03bb})=e^{\u03bb(e^t\u22121)}"

.

 


Now we take the first and second derivatives of  "M_X(t) ." Remember we are differentiating with respect to t :


"M'_X(t)=\\dfrac{d}{dt}[e^{\u03bb(e^t\u22121)}]=\u03bbe^te^{\u03bb(e^t\u22121)}"

 

"M''X(t)=\\dfrac{d}{dt}[\u03bbe^te^{\u03bb(e^t\u22121)}]=\u03bbe^te^{\u03bb(e^t\u22121)}+\u03bb^2e^{2t}e^{\u03bb(e^t\u22121)}"


Next we evaluate the derivatives at t=0 to find the first and second moments of X :


"E[X]=M'_X(0)"


"E[X^2]=M''_X(0)=\u03bbe^0e^{\u03bb(e^0\u22121)}=\u03bb=\u03bbe^0e^{\u03bb(e^0\u22121)}+\u03bb^2e^0e^{\u03bb(e^0\u22121)}=\u03bb+\u03bb^2"

 


Finally, in order to find the variance, we use the alternate formula:


"Var(X)=E[X^2]\u2212(E[X])^2=\u03bb+\u03bb^2\u2212\u03bb^2=\u03bb."

 



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
APPROVED BY CLIENTS