Question #173483

10. (a) For a distribution, the mean is 10, variance is 16, the skewness 4

sk is +1 and kurtosis 

b2

 is 4. Obtain the first four moments about the origin i.e. zero. Comment upon the 

nature of the distribution.


1
Expert's answer
2021-03-30T07:08:13-0400

Mean =m1β€²=10= m_1β€² =10 , variance =m2=16m_2 =16 , coefficient of skewness =Ξ³1=+1= \gamma_1 = +1 , coefficient of kurtosis is Ξ²2=4.\beta_2 = 4.

First moment about the origin is

Mean =m1β€²=10= m_1β€² = 10 .


Next, Variance =π‘š2=16=βˆ‘xnβˆ’(βˆ‘xn)2= π‘š_2 = 16 =\dfrac{βˆ‘ x}{n}-(\dfrac{\sum x}{n})^2


Second moment about the origin is m2=βˆ‘x2n=m2+ΞΌ12=Variance+(βˆ‘xn)2=16+102=116m_2=\dfrac{\sum x^2}{n}=m_2+\mu_1^2=Variance+(\dfrac{\sum x}{n})^2=16+10^2=116


Coefficient of skewness is +1:

Ξ³1=+1=π‘š3π‘š232β†’π‘š3=π‘š232=1632=64\gamma1 = +1 =\dfrac{π‘š_3}{π‘š_2^{\frac{3}{2}}}\rightarrow π‘š_3 = π‘š_2^{\frac{3}{2}} = 16^{\frac{3}{2}} = 64

    

Coefficient of kurtosis is 4:


Ξ²2=4π‘š4π‘š22=4β†’π‘š4=4(16)2=1024\beta_2 = 4\\ \dfrac{π‘š_4}{π‘š_2^2} = 4 \rightarrow π‘š_4 = 4(16)^2 = 1024

Third moment about the origin is


π‘š3β€²=π‘š3+3π‘š2π‘š1β€²+π‘š1β€²3=64+3(16)(10)+103=πŸπŸ“πŸ’πŸ’π‘š_3β€² = π‘š_3 + 3π‘š_2π‘š_1β€² + π‘š_1β€² ^3 = 64 + 3(16)(10) + 10^3 = πŸπŸ“πŸ’πŸ’


Fourth moment about the origin is


π‘š4β€²=π‘š4+4π‘š3π‘š1β€²+6π‘š2π‘š2β€²+π‘š1β€²4=1024+4(64)(10)+6(16)102+104=πŸπŸ‘πŸπŸ–πŸ’π‘š_4β€² = π‘š_4 + 4π‘š_3π‘š_1β€² + 6π‘š_2π‘š_2β€² + π‘š_1β€² ^4 = 1024 + 4(64)(10) + 6(16)102 + 10^4 = πŸπŸ‘πŸπŸ–πŸ’


It is a positively skewed distribution.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS