a)
"P(X > 70000) = P(Z > \\frac{70000-48600}{14000}) \\\\\n\n= P(Z> 1.53) \\\\\n\n= 0.063"
Therefore Expected number of people with salaries above $70000:
"= 0.063 \\times 50 = 3.15"
b)
"P(45000< \\bar{X} < 50000) = P(\\frac{45000-48600}{\\frac{14000}{\\sqrt{10}}} <Z< \\frac{50000-48600}{\\frac{14000}{\\sqrt{10}}}) \\\\\n\n= P(-0.81 < Z < 0.32) \\\\\n\n= P(Z<0.32)-P(Z <-0.81) \\\\\n\n= 0.6255 -0.2090 \\\\\n\n= 0.4165"
c) From standard normal tables:
"P(Z < 0.6745) = 0.75"
The third quartile salary:
"= Mean + 0.6745 \\times \u03c3 \\\\\n\n= 48600 + 0.6745 \\times 14000 \\\\\n\n= 58043"
Jackie's salary "= 0.83 \\times 58043 = 48175.69"
Comments
Leave a comment