The probability of selecting a bad battery is "q=0.04" and the probability of selecting a good battery is "p=1-q=0.96" .
We can consider this process as binomial experiment:
suppose we select "n" batteries and let "X" be the number of good batteries.
Then "X\\sim B(n,p)" . We will use formula "P(X=k)= \\binom{n}{k} p^k q^{n-k}" .
a) "n=10"
"P(X=7)= \\binom{10}{7} 0.96^7 \\cdot 0.04^{3}=120\\cdot 0.96^7 \\cdot 0.04^{3}=0.0057"
b) "n=15"
The probability that at least 13 batteries are bad is equal to the probability that at most 2 batteries are good.
"P(X\\leq 2)=P(X=0)+P(X=1)+P(X=2)= \\\\\n=\\binom{15}{0} 0.96^0\\cdot 0.04^{15}+ \\binom{15}{1} 0.96^1\\cdot 0.04^{14}+ \\binom{15}{2} 0.96^2\\cdot 0.04^{13}=\\\\\n= 1\\cdot 0.04^{15}+ 15\\cdot 0.96\\cdot 0.04^{14}+ 105\\cdot 0.96^2\\cdot 0.04^{13}\\approx 0"
c) "n=20"
"P(X\\leq 18)=1-P(20\\geq X\\geq 19)=1-P(X=19)-P(X=20)=\n\\\\\n=1-\\binom{20}{20} 0.96^{20}\\cdot 0.04^{0}- \\binom{20}{19} 0.96^{19}\\cdot 0.04^{1}=\\\\\n= 1-1\\cdot 0.96^{20}-20\\cdot 0.96^{19}\\cdot 0.04\\approx 0.18966"
Answer: a) 0.0057; b) 0; c) 0.18966.
Comments
Leave a comment