Let "X=" the lasting time of laptop batteries: "X\\sim N(\\mu, \\sigma^2)"
Given "\\mu=11h, \\sigma=0.7h"
a) "\\bar{X}\\sim N(\\mu,\\sigma^2\/n)"
Given "n=8"
"=1-P(Z\\leq\\dfrac{11.5-11}{0.7\/\\sqrt{8}})\\approx1-P(Z\\leq2.020305)"
"\\approx1-0.978324=0.021676"
"P(\\bar{X}>11.5)=0.021676"
b)
"\\approx P(Z<-1.428571)\\approx0.076564"
"30(0.076564)=2"
(c) The third quartile Q3 is the 75th percentile of a data set.
"\\dfrac{X-11}{0.7}\\approx0.674490"
"X\\approx11+0.7(0.674490)=11.472143"
"\\dfrac{80\\%}{100\\%}\\cdot11.472143=9.18(h)"
9.18 hours
Comments
Leave a comment