Here x follows the binomial distribution
"P(X=x)=C(n,x)\\cdot p^x\\cdot (1-p)^{n-x}"
a) n = 10
p = 0.92
"P(X=8)=C(10,8)\\cdot 0.92^8\\cdot (1-0.92)^{10-8}=\\frac{10!}{8!2!}\\cdot 0.92^8\\cdot0.08^2=0.1478"
b) n = 15
p = 1 – 0.92 = 0.08
"P(X\\le2)=P(X=0)+P(X=1)+P(X=2)"
"P(X=0)=C(15,0)\\cdot0.08^0\\cdot0.92^{15}=0.2863"
"P(X=1)=C(15,1)\\cdot0.08^1\\cdot0.92^{14}=0.3734"
"P(X=2)=C(15,2)\\cdot0.08^2\\cdot0.92^{13}=0.2273"
"P(X\\le2)=0.2863+0.3734+0.2273=0.887"
c) n = 20
p = 0.92
"P(X\\ge18)=P(X=18)+P(X=19)+P(X=20)"
"P(X=18)=C(20,18)\\cdot0.92^{18}\\cdot0.08^{2}=0.2711"
"P(X=19)=C(20,19)\\cdot0.92^{19}\\cdot0.08^{1}=0.3281"
"P(X=20)=C(20,20)\\cdot0.92^{20}\\cdot0.08^{0}=0.1887"
"P(X\\ge18)=0.2711+0.3281+0.1887=0.7879"
Answer:
a) 0.1478
b) 0.887
c) 0.7879
Comments
Leave a comment