Here x follows the binomial distribution
P(X=x)=C(n,x)⋅px⋅(1−p)n−x
a) n = 10
p = 0.92
P(X=8)=C(10,8)⋅0.928⋅(1−0.92)10−8=8!2!10!⋅0.928⋅0.082=0.1478
b) n = 15
p = 1 – 0.92 = 0.08
P(X≤2)=P(X=0)+P(X=1)+P(X=2)
P(X=0)=C(15,0)⋅0.080⋅0.9215=0.2863
P(X=1)=C(15,1)⋅0.081⋅0.9214=0.3734
P(X=2)=C(15,2)⋅0.082⋅0.9213=0.2273
P(X≤2)=0.2863+0.3734+0.2273=0.887
c) n = 20
p = 0.92
P(X≥18)=P(X=18)+P(X=19)+P(X=20)
P(X=18)=C(20,18)⋅0.9218⋅0.082=0.2711
P(X=19)=C(20,19)⋅0.9219⋅0.081=0.3281
P(X=20)=C(20,20)⋅0.9220⋅0.080=0.1887
P(X≥18)=0.2711+0.3281+0.1887=0.7879
Answer:
a) 0.1478
b) 0.887
c) 0.7879
Comments
Leave a comment