μ = 26000
x = 20000
σ = 5000
(a)
"P(x<20000) = P(Z = \\frac{x-\u03bc}{\u03c3}) \\\\\n\n= P(Z = \\frac{20000-26000}{5000}) \\\\\n\n=P(Z = \\frac{-6000}{5000}) \\\\\n\n= P(Z=-1.2) \\\\\n\n= 0.1151"
The probability that a set of tires wears out before 20,000 miles is 0.1151.
(b)
"P(x\u226520000) = 1 \u2013 P(x<20000) \\\\\n\n= 1 - P(Z = \\frac{x-\u03bc}{\u03c3}) \\\\\n\n= 1 - P(Z = \\frac{20000-26000}{5000}) \\\\\n\n= 1 - P(Z = \\frac{-6000}{5000}) \\\\\n\n= 1 - P(Z=-1.2) \\\\\n\n= 1 - 0.1151 \\\\\n\n= 0.8849"
The probability that the manufacturer turns a profit on selling a set to one customer is 0.8849
(c)
"P(x\u226520000) = 1 \u2013 P(x<20000) \\\\\n\nP(x<20000) = P(Z= \\frac{x-\u03bc}{\\frac{\u03c3}{\\sqrt{n}}}) \\\\\n\nP(x\u226520000) = 1 - P(Z= \\frac{x-\u03bc}{\\frac{\u03c3}{\\sqrt{n}}}) \\\\\n\nn= 500 \\\\\n\nP(x\u226520000) = 1 - P(Z= \\frac{20000-26000}{\\frac{5000}{\\sqrt{500}}}) \\\\\n\n= 1 - P(Z = \\frac{-6000}{226.61}) \\\\\n\n= 1-P(Z=-26.832) \\\\\n\n= 1-0 \\\\\n\n=1"
The probability that it earns a profit after paying for any replacements is 1.
Comments
Leave a comment