Answer to Question #280105 in Real Analysis for abc

Question #280105

Suppose that š‘“ is differentiable and š‘“ ′′(š‘Ž) exists. Prove that š‘“ ′′(š‘Ž) = lim ā„Žā†’š‘Ž (š‘“(š‘Ž+ā„Ž)āˆ’2š‘“(š‘Ž)+š‘“(š‘Žāˆ’ā„Ž))/ ā„Ž^2. Give an example where the above limit exists, but š‘“ ′′(š‘Ž) does not exist.


1
Expert's answer
2022-01-03T19:18:45-0500

f(x+h)=f(x)+hf′(x)+h22!f′′(x)+O(h3)(i)f(xāˆ’h)=f(x)āˆ’hf′(x)+h22!f′′(x)āˆ’O(h3)(ii)adding (i) and (ii)f(x+h)+f(xāˆ’h)=2f(x)+h22!f′′(x)orf′′(x)=f(x+h)āˆ’2f(x)+f(xāˆ’h)h2Taking the Limit as h→0f′′(x)=lim⁔h→0f(x+h)āˆ’2f(x)+f(xāˆ’h)h2⇒f′′(a)=lim⁔h→0f(a+h)āˆ’2f(a)+f(aāˆ’h)h2We need to find f such that f′(x)=∣x∣.⇒f(x)=∫0x∣t∣dt=x2sgn(x)2Since lim⁔h→0f(0+h)āˆ’2f(0)+f(0āˆ’h)=h22āˆ’h22=0and lim⁔h→0h2=0,⇒lim⁔h→0f(a+h)āˆ’2f(a)+f(aāˆ’h)h2L.H‾‾lim⁔h→0ddh(f(a+h)āˆ’2f(a)+f(aāˆ’h))ddx(h2)=lim⁔h→0f′(h)+f(āˆ’h)2h=lim⁔h→0f′(h)āˆ’f(āˆ’h)2h=lim⁔h→0∣h∣+āˆ£āˆ’h∣2h=0Clearly, f′′(0) does not exist since āˆ£x∣ is not differentiable at point 0f\left( {x + h} \right) = f\left( x \right) + hf'\left( x \right) + \frac{{{h^2}}}{{2!}}f''\left( x \right) + O\left( {{h^3}} \right) \qquad (i) \\ f\left( {x - h} \right) = f\left( x \right) - hf'\left( x \right) + \frac{{{h^2}}}{{2!}}f''\left( x \right) -O\left( {{h^3}} \right) \qquad (ii) \\ \\ \text{adding } (i) ~\text{and } (ii) f\left( {x + h} \right) + f\left( {x - h} \right) = 2f\left( x \right) + \frac{{{h^2}}}{{2!}}f''\left( x \right) \\ \text{or} f''\left( x \right) = \frac{{f\left( {x + h} \right) - 2f\left( x \right) + f\left( {x - h} \right)}}{{{h^2}}} \\ \text{Taking the Limit as } h \to 0 \\ f''\left( x \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {x + h} \right) - 2f\left( x \right) + f\left( {x - h} \right)}}{{{h^2}}} \\ \Rightarrow f''\left( a \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a + h} \right) - 2f\left( a \right) + f\left( {a - h} \right)}}{{{h^2}}} \\ \text{We need to find }f \text{ such that } f'\left( x \right) = \left| x \right|. \\ \Rightarrow f\left( x \right) = \int_0^x {\left| t \right|dt} = \frac{{{x^2}{\mathop{\rm sgn}} \left( x \right)}}{2} \\ \text{Since } \mathop {\lim }\limits_{h \to 0} f\left( {0 + h} \right) - 2f\left( 0 \right) + f\left( {0 - h} \right) = \frac{{{h^2}}}{2} - \frac{{{h^2}}}{2} = 0 \\ \text{and } \mathop {\lim }\limits_{h \to 0} {h^2} = 0, \\ \Rightarrow \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {a + h} \right) - 2f\left( a \right) + f\left( {a - h} \right)}}{{{h^2}}}\underline{\underline {L.H}} \mathop {\lim }\limits_{h \to 0} \frac{{\frac{d}{{dh}}\left( {f\left( {a + h} \right) - 2f\left( a \right) + f\left( {a - h} \right)} \right)}}{{\frac{d}{{dx}}\left( {{h^2}} \right)}} = \mathop {\lim }\limits_{h \to 0} \frac{{f'\left( h \right) + f\left( { - h} \right)}}{{2h}} \\ = \mathop {\lim }\limits_{h \to 0} \frac{{f'\left( h \right) - f\left( { - h} \right)}}{{2h}} = \mathop {\lim }\limits_{h \to 0} \frac{{\left| h \right| + \left| { - h} \right|}}{{2h}} = 0 \\ \text{Clearly, } f''\left( 0 \right) \text{ does not exist since } \left| x \right| \text{ is not differentiable at point 0}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment