f(x+h)=f(x)+hfā²(x)+2!h2āfā²ā²(x)+O(h3)(i)f(xāh)=f(x)āhfā²(x)+2!h2āfā²ā²(x)āO(h3)(ii)adding (i) and (ii)f(x+h)+f(xāh)=2f(x)+2!h2āfā²ā²(x)orfā²ā²(x)=h2f(x+h)ā2f(x)+f(xāh)āTaking the Limit as hā0fā²ā²(x)=hā0limāh2f(x+h)ā2f(x)+f(xāh)āāfā²ā²(a)=hā0limāh2f(a+h)ā2f(a)+f(aāh)āWe need to find f such that fā²(x)=ā£xā£.āf(x)=ā«0xāā£tā£dt=2x2sgn(x)āSince hā0limāf(0+h)ā2f(0)+f(0āh)=2h2āā2h2ā=0and hā0limāh2=0,āhā0limāh2f(a+h)ā2f(a)+f(aāh)āL.Hāāhā0limādxdā(h2)dhdā(f(a+h)ā2f(a)+f(aāh))ā=hā0limā2hfā²(h)+f(āh)ā=hā0limā2hfā²(h)āf(āh)ā=hā0limā2hā£hā£+ā£āhā£ā=0Clearly, fā²ā²(0) does not exist since ā£x⣠is not differentiable at point 0
Comments
Leave a comment