f(x+h)=f(x)+hf′(x)+2!h2f′′(x)+O(h3)(i)f(x−h)=f(x)−hf′(x)+2!h2f′′(x)−O(h3)(ii)adding (i) and (ii)f(x+h)+f(x−h)=2f(x)+2!h2f′′(x)orf′′(x)=h2f(x+h)−2f(x)+f(x−h)Taking the Limit as h→0f′′(x)=h→0limh2f(x+h)−2f(x)+f(x−h)⇒f′′(a)=h→0limh2f(a+h)−2f(a)+f(a−h)We need to find f such that f′(x)=∣x∣.⇒f(x)=∫0x∣t∣dt=2x2sgn(x)Since h→0limf(0+h)−2f(0)+f(0−h)=2h2−2h2=0and h→0limh2=0,⇒h→0limh2f(a+h)−2f(a)+f(a−h)L.Hh→0limdxd(h2)dhd(f(a+h)−2f(a)+f(a−h))=h→0lim2hf′(h)+f(−h)=h→0lim2hf′(h)−f(−h)=h→0lim2h∣h∣+∣−h∣=0Clearly, f′′(0) does not exist since ∣x∣ is not differentiable at point 0
Comments