Question #280100

Let 𝑓: (0,1) → ℝ be a bounded continuous function. Show that 𝑔(𝑥) = 𝑥(1 − 𝑥)𝑓(𝑥) is uniformly continuous. 


1
Expert's answer
2021-12-16T16:04:49-0500

g(x)g(x0)=x(1x)f(x)x0(1x0)f(x0)=|g(x)-g(x_0)|=|x(1-x)f(x)-x_0(1-x_0)f(x_0)|=


=x(1x)f(x)x(1x)f(x0)+x(1x)f(x0)x0(1x0)f(x0)=|x(1-x)f(x)-x(1-x)f(x_0)+x(1-x)f(x_0)-x_0(1-x_0)f(x_0)|\le


x(1x)f(x)f(x0)+fx0x(1x)x0(1x0)\le |x(1-x)||f(x)-f(x_0)|+|fx_0||x(1-x)-x_0(1-x_0)|


Since f(x) is bounded we have that f(x)Mf(x)\le M where M is some number. Then:

x(1x)f(x)f(x0)+fx0x(1x)x0(1x0)|x(1-x)||f(x)-f(x_0)|+|fx_0||x(1-x)-x_0(1-x_0)|\le


2Mx(1x)+Mx(1x)x0(1x0)\le 2M|x(1-x)|+M|x(1-x)-x_0(1-x_0)|


find maximum of x(1x)x(1-x) :

x=1/2x=1/2

then:

2Mx(1x)+Mx(1x)x0(1x0)<2M1/4+M1/4=3M/42M|x(1-x)|+M|x(1-x)-x_0(1-x_0)|<2M\cdot1/4+M\cdot1/4=3M/4

δ=4ε/3M\delta=4\varepsilon/3M

Since δ\delta does not depend on x0, g(x) is uniformly continuous.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS