ANSWER: the series converges.
Explanation. 3⋅51+5⋅83+7⋅115+⋯+(2n+1)⋅(3n+2)2n−1+⋯
Let an=(2n+1)⋅(3n+2)2n−1=n2n⋅(2+n1)(3+n2)2−n1 , bn=n231 . Since limn→∞bnan=limn→∞(2+n1)(3+n2)2−n1=2⋅32=321>0 and ∑n=1∞n231 converges, hence (by Limit Comparison Test) ∑n=1∞(2n+1)⋅(3n+2)2n−1 converges.
Comments