Assume that $1<p<+\infty$, a real-valued function $f$ is absolutely continuous on $[a,b]$,and its derivative $f'$ is in $L^p[a,b]$. Prove that $f$ is $\alpha$-Lipschitz, where $\alpha=1/q$, with $q$ being the conjugate exponent of$p$.
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments