Question #280099

State suitable conditions and prove that (𝑓𝑔) ′ = 𝑓𝑔 ′ + 𝑓 ′𝑔.


1
Expert's answer
2021-12-16T10:00:48-0500

Let us state the suitable conditions: if the functions ff and gg are differentiable in each point of their common domain, then the function fgfg is differentiable in each point of this domain and (𝑓𝑔)=𝑓𝑔+𝑓𝑔.(𝑓𝑔)'= 𝑓𝑔' + 𝑓'𝑔.


Let us prove that (𝑓𝑔)=𝑓𝑔+𝑓𝑔:(𝑓𝑔)'= 𝑓𝑔' + 𝑓'𝑔:


(f(x)g(x))=limΔx0f(x+Δx)g(x+Δx)f(x)g(x)Δx=limΔx0f(x+Δx)g(x+Δx)f(x+Δx)g(x)+f(x+Δx)g(x)f(x)g(x)Δx=limΔx0f(x+Δx)[g(x+Δx)g(x)]+[f(x+Δx)f(x)]g(x)Δx=limΔx0f(x+Δx)[g(x+Δx)g(x)]Δx+limΔx0[f(x+Δx)f(x)]g(x)Δx=limΔx0f(x+Δx)limΔx0g(x+Δx)g(x)Δx+limΔx0f(x+Δx)f(x)Δxg(x)=f(x)g(x)+f(x)g(x).(f(x)g(x))' =\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)g(x+\Delta x)-f(x)g(x)}{\Delta x} \\=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)g(x+\Delta x)-f(x+\Delta x)g(x)+f(x+\Delta x)g(x)-f(x)g(x)}{\Delta x} \\=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)[g(x+\Delta x)-g(x)]+[f(x+\Delta x)-f(x)]g(x)}{\Delta x} \\=\lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)[g(x+\Delta x)-g(x)]} {\Delta x}+ \lim\limits_{\Delta x\to 0}\frac{[f(x+\Delta x)-f(x)]g(x)}{\Delta x} \\=\lim\limits_{\Delta x\to 0}f(x+\Delta x)\lim\limits_{\Delta x\to 0}\frac{g(x+\Delta x)-g(x)} {\Delta x}+ \lim\limits_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}g(x) \\=f(x)g'(x)+f'(x)g(x).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS