Let us state the suitable conditions: if the functions f and g are differentiable in each point of their common domain, then the function fg is differentiable in each point of this domain and (fg)′=fg′+f′g.
Let us prove that (fg)′=fg′+f′g:
(f(x)g(x))′=Δx→0limΔxf(x+Δx)g(x+Δx)−f(x)g(x)=Δx→0limΔxf(x+Δx)g(x+Δx)−f(x+Δx)g(x)+f(x+Δx)g(x)−f(x)g(x)=Δx→0limΔxf(x+Δx)[g(x+Δx)−g(x)]+[f(x+Δx)−f(x)]g(x)=Δx→0limΔxf(x+Δx)[g(x+Δx)−g(x)]+Δx→0limΔx[f(x+Δx)−f(x)]g(x)=Δx→0limf(x+Δx)Δx→0limΔxg(x+Δx)−g(x)+Δx→0limΔxf(x+Δx)−f(x)g(x)=f(x)g′(x)+f′(x)g(x).
Comments