Answer to Question #249180 in Real Analysis for Raghad

Question #249180
Show that if Zn = (a + b")
1
Expert's answer
2021-10-11T15:07:44-0400

if zn=(an+bn)1/nz_n=(a^n+b^n)^{1/n} where 0<a<b0<a<b , then

limnzn=b\displaystyle{\lim_{n\to \infin}}z_n=b


(an+bn)1/n=b((a/b)n+1)1/n(a^n+b^n)^{1/n}=b((a/b)^n+1)^{1/n}


limn(a/b)n=0\displaystyle{\lim_{n\to \infin}}(a/b)^n=0


limn((a/b)n+1)1/n=0\displaystyle{\lim_{n\to \infin}}((a/b)^n+1)^{1/n}=0


limn(b((a/b)n+1)1/n)=b1=b\displaystyle{\lim_{n\to \infin}}(b((a/b)^n+1)^{1/n})=b\cdot1=b



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment