Question #247058

 Let 𝑓 be differentiable. Show that if lim π‘₯β†’βˆž

𝑓(π‘₯) = 𝐿 ∈ ℝ then lim π‘₯β†’βˆž

𝑓′(π‘₯) = 0. Provided that the latter limit is existing. Give an example where the converse is not true. Also give an example for which the limit of 𝑓′ is not existing even though the limit of 𝑓 is the same as given. 


1
Expert's answer
2021-10-06T16:50:08-0400
  1. Let f∈L1(R),βˆƒ limxβˆ’>∞f(x)=bβ‰ 0f\in L^1(R),\exist\space lim_{x->\infty}f(x)=b\neq0

Let Ο΅ be choosen as 0<Ο΅<∣b∣/2\epsilon\space be\space choosen\space as\space0<\epsilon<|b|/2

Acording with definition of lim

βˆƒM>0:βˆ€(x>M)∣f(x)βˆ’b∣<Ο΅<∣b∣/2\exist M>0:\forall(x>M)|f(x)-b|<\epsilon<|b|/2

We may think b>0 taking otherwise -f(x)

Then f(x)>b/2 as x>M and βˆ«MMβ‹…K∣f(x)∣dx>Mβ‹…Kβ‹…b2\int\limits_{M}^{M\cdot K} |f(x)| dx>\frac{M\cdot K\cdot b}{2}

with any K>1.

Also valid that βˆ«βˆ’βˆžβˆžβˆ£f(x)∣dxβ‰₯∫MMβ‹…K∣f(x)∣dx>Mβ‹…Kβ‹…b2\int\limits_{-\infty}^{\infty} |f(x)| dx\ge \int\limits_{M}^{M\cdot K} |f(x)| dx>\frac{M\cdot K\cdot b}{2}

If we will take K rather big we will have

βˆ«βˆ’βˆžβˆžβˆ£f(x)∣dx=∞\int\limits_{-\infty}^{\infty} |f(x)| dx=\infty  that is controversy

  1. It is very easy to give an example f∈L1(R)f\in L_1(R) such that

βˆƒΛ‰ limxβˆ’>∞f(x)\bar{\exist}\space lim_{x->\infty}f(x) We take  f(x)=1 if βˆ£kβˆ’xβˆ£β‰€1k2,k=1,2,...f(x)=1\space if \space|k-x|\le\frac{1}{k^2},k=1,2,... and f(x)=0 otherwise. Then βˆ«βˆ’βˆžβˆžβˆ£f(x)∣dx=\int\limits_{-\infty}^{\infty} |f(x)| dx=2β‹…βˆ‘i=1∞1k2<∞2\cdot \displaystyle\sum_{i=1}^{\infty}\frac{1}{k^2}<\infty

but βˆƒ{xn}n=1,2,..\exists \{x_n\}_{n=1,2,..} such that f(xn)=1f(x_n)=1 if n is odd and f(xn)=0f(x_n)=0 if n is even there fore limit f(x) on ∞\infty doesn't exist.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS