Question #247857

Let 𝑓 be differentiable. Show that if limπ‘₯β†’βˆž 𝑓(π‘₯) = 𝐿 ∈ ℝ then limπ‘₯β†’βˆž 𝑓 β€² (π‘₯) = 0. Provided that the latter limit is existing. Give an example where the converse is not true. Also give an example for which the limit of 𝑓 β€² is not existing even though the limit of 𝑓 is the same as given.


1
Expert's answer
2021-10-08T15:49:05-0400

Let f∈L1(R),βˆƒ limxβˆ’>∞f(x)=bβ‰ 0f\in L^1(R),\exist\space lim_{x->\infty}f(x)=b\neq0

Let Ο΅ be choosen as 0<Ο΅<∣b∣/2\epsilon\space be\space choosen\space as\space0<\epsilon<|b|/2

According with definition of lim

βˆƒM>0:βˆ€(x>M)∣f(x)βˆ’b∣<Ο΅<∣b∣/2\exist M>0:\forall(x>M)|f(x)-b|<\epsilon<|b|/2

We may think b>0 taking otherwise -f(x)

Then f(x)>b/2 as x>M and βˆ«MMβ‹…K∣f(x)∣dx>Mβ‹…Kβ‹…b2\int\limits_{M}^{M\cdot K} |f(x)| dx>\frac{M\cdot K\cdot b}{2}

with any K>1.

Also valid that βˆ«βˆ’βˆžβˆžβˆ£f(x)∣dxβ‰₯∫MMβ‹…K∣f(x)∣dx>Mβ‹…Kβ‹…b2\int\limits_{-\infty}^{\infty} |f(x)| dx\ge \int\limits_{M}^{M\cdot K} |f(x)| dx>\frac{M\cdot K\cdot b}{2}

If we will take K rather big we will have

βˆ«βˆ’βˆžβˆžβˆ£f(x)∣dx=∞\int\limits_{-\infty}^{\infty} |f(x)| dx=\infty  that is controversy


An example f∈L1(R)f\in L_1(R) such that βˆƒΛ‰ limxβˆ’>∞f(x)\bar{\exist}\space lim_{x->\infty}f(x) :

We take  f(x)=1 if βˆ£kβˆ’xβˆ£β‰€1k2,k=1,2,...f(x)=1\space if \space|k-x|\le\frac{1}{k^2},k=1,2,... and f(x)=0 otherwise. Then βˆ«βˆ’βˆžβˆžβˆ£f(x)∣dx=\int\limits_{-\infty}^{\infty} |f(x)| dx=2β‹…βˆ‘i=1∞1k2<∞2\cdot \displaystyle\sum_{i=1}^{\infty}\frac{1}{k^2}<\infty

but βˆƒ{xn}n=1,2,..\exists \{x_n\}_{n=1,2,..} such that f(xn)=1f(x_n)=1 if n is odd and f(xn)=0f(x_n)=0 if n is even there fore limit f(x) on βˆž\infty doesn't exist.


if limπ‘₯β†’βˆž 𝑓(π‘₯) = 𝐿 ∈ ℝ then:

limπ‘₯β†’βˆž 𝑓'(π‘₯) =limπ‘₯β†’βˆž (dL/dx)=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS