Question #249064

Show that 𝑈(−𝑓, 𝑝) = −𝐿(𝑓, 𝑝) and 𝐿(−𝑓, 𝑝) = −𝑈(𝑓, 𝑝). 


1
Expert's answer
2021-10-11T16:03:03-0400

𝑈(𝑓, 𝑝) and 𝐿(𝑓, 𝑝) are upper and lower Riemann sums for the partition p.

𝑈(𝑓,𝑝)=MiΔxi, L(𝑓,𝑝)=miΔxi𝑈(𝑓, 𝑝)=\sum M_i\Delta x_i,\ L(𝑓, 𝑝)=\sum m_i\Delta x_i

Mi=sup{f(x):xi1xxi}, mi=inf{f(x):xi1xxi}M_i=sup\{f(x):x_{i-1}\le x \le x_i\},\ m_i=inf\{f(x):x_{i-1}\le x \le x_i\}


sup{f(x):xi1xxi}=inf{f(x):xi1xxi}=misup\{-f(x):x_{i-1}\le x \le x_i\}=-inf\{f(x):x_{i-1}\le x \le x_i\}=-m_i

U(f,p)=miΔxi=L(f,p)U(-f,p)=-\sum m_i\Delta x_i=-L(f,p)


inf{f(x):xi1xxi}=sup{f(x):xi1xxi}=Miinf\{-f(x):x_{i-1}\le x \le x_i\}=-sup\{f(x):x_{i-1}\le x \le x_i\}=-M_i

L(f,p)=MiΔxi=U(f,p)L(-f,p)=-\sum M_i\Delta x_i=-U(f,p)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS