f ( x ) = f ( 0 ) + f ′ ( 0 ) x + f ′ ′ ( 0 ) x 2 2 + f ′ ′ ′ ( c ) x 3 6 f(x)=f(0)+f'(0)x+{\frac {f''(0)x^{2}} 2} + {\frac {f'''(c)x^{3}} 6} f ( x ) = f ( 0 ) + f ′ ( 0 ) x + 2 f ′′ ( 0 ) x 2 + 6 f ′′′ ( c ) x 3
where c ∈ ( 0 ; x ) c\in (0;x) c ∈ ( 0 ; x ) , x = 1 x=1 x = 1
f(1) = 0
f(0) = 1
f ′ ( x ) = − 5 2 ( 1 − x ) 3 2 f'(x) = -{\frac 5 2} (1-x)^{{\frac 3 2}} f ′ ( x ) = − 2 5 ( 1 − x ) 2 3
f'(0) = -2.5
f ′ ′ ( x ) = 15 4 ( 1 − x ) 1 2 f''(x) = {\frac {15} 4} (1-x)^{{\frac 1 2}} f ′′ ( x ) = 4 15 ( 1 − x ) 2 1
f''(0) = 3.75
f'''(c) = − 15 8 1 − c -{\frac {15} {8\sqrt{1-c}}} − 8 1 − c 15
So, we have to verify if ∃ c ∈ ( 0 ; 1 ) : 0 = 1 − 2.5 + 1.875 − 15 48 1 − c \exist c\in (0;1): 0=1-2.5+1.875-{\frac {15} {48\sqrt{1-c}}} ∃ c ∈ ( 0 ; 1 ) : 0 = 1 − 2.5 + 1.875 − 48 1 − c 15
15 48 1 − c = 0.375 {\frac {15} {48\sqrt{1-c}}}=0.375 48 1 − c 15 = 0.375
1 − c = 5 6 \sqrt{1-c} = {\frac 5 6} 1 − c = 6 5
c = 11 36 c = {\frac {11} {36}} c = 36 11
Theorem has been verified and proved.
Comments