Using n=6 integrate the function in the interval [1, 2]
(i) Complete the table
xf(x)1e−100acos 3a67e−6007acos 621a68e−75acos 4a69e−2003acos 29a610e−60acos 5a611e−60011acos 211a2e−50acos 6a
(ii) Use trapezoidal rule.
∫12e100−ax cos 3ax dx=2h(y0+2(y1+y2+y3+y4+y5)+y6)=121(e100−acos3a+2(e600−7acos 627a+e75−acos 4a+e300−3acos29a+e60−acos 5a+e600−11acos211a)+e50−acos6a)
(iii) Simpsons rule to evaluate the integral.
h=62−1=61
∫12e100−ax cos 3ax dx=3h(y0+4(y1+y3+y5)+2(y2+y4)+y6)=181(e100−acos3a+4(e600−7acos 627a+e60−acos 5a+e600−11acos211a)+2(e75−acos 4a+e60−acos 5a)+e50−acos6a)
Comments