Using n=6 integrate the function in the interval [1, 2]Â
(i) Complete the table
x 1
f(x)
(ii) Use trapezoidal rule.
(iii) Simpsons rule to evaluate the integral.
Using n=6 integrate the function in the interval [1, 2]Â
(i) Complete the table
"\\begin{matrix}\nx & 1 & \\frac{7}{6} & \\frac{8}{6} & \\frac{9}{6} & \\frac{10}{6} & \\frac{11}{6} & 2\\\\ \nf(x) & e^{-\\frac{a}{100}}cos\\ 3a & e^{-\\frac{7a}{600}}cos\\ \\frac{21a}{6} & e^{-\\frac{a}{75}}cos\\ 4a & e^{-\\frac{3a}{200}}cos\\ \\frac{9a}{2} & e^{-\\frac{a}{60}}cos\\ 5a & e^{-\\frac{11a}{600}}cos\\ \\frac{11a}{2} & e^{-\\frac{a}{50}}cos\\ 6a\n\\end{matrix}"
(ii) Use trapezoidal rule.
"\\intop_1^2 e^\\frac{-ax}{100}\\ cos\\ 3ax\\ dx=\\frac{h}{2}(y_0+2(y_1+y_2+y_3+y_4+y_5)+y_6)\\\\\n=\\frac{1}{12}(e^\\frac{-a}{100}cos3a+2(e^\\frac{-7a}{600}cos\\ \\frac{27a}{6}+e ^\\frac{-a}{75}cos\\ 4a+ e^\\frac{-3a}{300}cos \\frac{9a}{2}+e ^\\frac{-a}{60}cos\\ 5a+ e^\\frac{-11a}{600}cos \\frac{11a}{2})+e^\\frac{-a}{50}cos 6a)"
(iii) Simpsons rule to evaluate the integral.
"h=\\frac{2-1}{6}=\\frac{1}{6}"
"\\intop_1^2 e^\\frac{-ax}{100}\\ cos\\ 3ax\\ dx=\\frac{h}{3}(y_0+4(y_1+y_3+y_5)+2(y_2+y_4)+y_6)\\\\\n=\\frac{1}{18}(e^\\frac{-a}{100}cos3a+4(e^\\frac{-7a}{600}cos\\ \\frac{27a}{6}+e ^\\frac{-a}{60}cos\\ 5a+ e^\\frac{-11a}{600}cos \\frac{11a}{2})+2(e ^\\frac{-a}{75}cos\\ 4a+ e ^\\frac{-a}{60}cos\\ 5a )+e^\\frac{-a}{50}cos 6a)"
Comments
Leave a comment