y is a function of x satisfying the equation xy″ + ay′ + (x – b) y = 0, where a and b are integers. Find the values of constants a and b if y is given by the following table:
x: 0.8 1 1.2 1.4 1.6 1.8 2 2.2
y: 1.73036 1.95532 2.19756 2.45693 2.73309 3.02549 2.3333 3.65563
Here, "y" is a function of "x" satisfying the equation "xy\u2033 + ay' + (x \u2013 b) y = 0," where "a" and "b" are integers."\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n x &0.8 & 1 &1.2&1.4&1.6&1.8&2&2.2\\\\\n y&1.73036&1.95532&2.19756&2.45693&2.73309&3.02549&2.3333&3.65563\\\\\n\\end{array}"
"\\text{Now, }\\Delta^nf(x_0)=\\dfrac{\\Delta^{n-1}f(x_1)-\\Delta^{n-1}f(x_0)}{x_1-x_0}\\\\\\;\\\\\n\\text{and, } \\Delta f(x_0)=\\dfrac{f(x_1)-f(x_0)}{x_1-x_0}, \\Delta f(x_1)=\\dfrac{f(x_2)-f(x_1)}{x_2-x_1}\\\\\\;\\\\\n\\therefore \\Delta f(x_0)=1.1248\\\\\n\\Delta^2 f(x_0)=0.216\\\\\n\\Delta^3 f(x_0)=-0.003125\\\\\n\\Delta^4 f(x_0)=-0.00494792\\\\\n\\Delta^5 f(x_0)=-0.000520833\\\\\n\\Delta^6 f(x_0)=-21.7025\\\\\n\\Delta^7 f(x_0)=108.512"
So,
"f(x)\\\\=108.512 (x-2) (x-1.8) (x-1.6) (x-1.4) (x-1.2) (x-1) (x-0.8)\\\\-21.7025 (x-1.8) (x-1.6) (x-1.4) (x-1.2) (x-1) (x-0.8)\\\\-0.000520833 (x-1.6) (x-1.4) (x-1.2) (x-1) (x-0.8)\\\\-0.00494792 (x-1.4) (x-1.2) (x-1) (x-0.8)\\\\-0.003125 (x-1.2) (x-1) (x-0.8)\\\\+0.216 (x-1) (x-0.8)+1.1248 (x-0.8)+1.73036\\\\\\;\\\\ = 108.512 x^7-1085.12 x^6+4574.87 x^5-10538.7 x^4+14321.7 x^3-11477.1 x^2+5020.82 x-923.044"
"\\text{Now, }\\\\\ny'=f'(x)=759.512x^6-6510.72x^5+22874.35x^4-42154.8x^3+42965.1x^2-22954.2x+5020.82\\\\\ny''=f''(x)=4557.12x^5-32553.6x^4+91497.4x^3-126464.4x^2+85930.2x-22954.2\\\\"
We have , "xy\u2033 + ay' + (x \u2013 b) y = 0"
"\\text{Putting }x=1,\\\\\ny'(1)=0.168\\\\\ny''(1)=12.9329\\\\\n\\therefore 0.168a-1.95532b+14.88822=0~~~~~~~(1)\\\\\\;\\\\\n\n\\text{Putting }x=0.8,\\\\\ny'(0.8)=6.9152\\\\\ny''(0.8)=-141.1029\\\\\n\\therefore 6.9152a-1.73036b=111.15196~~~~~~~~~~(2)"
Solving "(1)\\;\\text{and }(2),"
We get "a=8,\\;b=6"
So, "\\pmb{\\boxed{ a=8,\\;b=6}}"
Comments
Leave a comment