Question #154284

(i) Using 5 points x=0, 1,2,3,4 complete the table

 x     0        1       2        3        4 
f(x) 

(ii) Find thef(0.5).the f’(0.5).

(iii) Find the exact value if

f(x)=(a)/100e(ax/100)cos⁡〖3ax3ae(ax/100)sin3axf’(x)=(-a)/100 e^(-ax/100) cos⁡〖3ax-3a〗 e^(-ax/100) sin⁡3ax


1
Expert's answer
2021-01-12T14:43:45-0500
SolutionSolution

f(x)=a100eax100cos⁡〖3ax3aeax100sin3ax    ddx(eax100cos3ax)f'(x)=\frac{−a}{100}e^{\frac{−ax}{100}}cos⁡〖3ax−3a〗e^{\frac{−ax}{100}}sin⁡3ax\\ \implies \frac{d}{dx}(e^\frac{-ax}{100}cos 3ax)

Integrate on both sides


f(x)=eax100cos 3axf(x)=e^\frac{-ax}{100}cos\ 3ax

Now, x=0


f(x)=e0 cos 00=1x=1f(1)=ea100 cos 3af(x)=e^{-0}\ cos\ 0^0=1\\ x=1\\ f(1)=e^\frac{a}{100}\ cos\ 3a



x01234f(x)1ea100cos 3aea50cos 6ae3a100cos 9aea25cos 12a\begin{matrix} x & 0 & 1 & 2 & 3 & 4 \\ f(x) & 1 & e^{-\frac{a}{100}}cos\ 3a & e^{-\frac{a}{50}}cos\ 6a & e^{-\frac{3a}{100}}cos\ 9a & e^{-\frac{a}{25}}cos\ 12a \end{matrix}



f(0.5)=a100ea200cos 3a23aea200sin 3a2aea200(cos3a2100+3 sin 3a2)f'(0.5)=\frac{-a}{100}e^\frac{-a}{200}cos\ \frac{3a}{2}-3ae^\frac{-a}{200}sin\ \frac{3a}{2}\\ -ae^\frac{-a}{200}(\frac{cos \frac{3a}{2}}{100}+3\ sin\ \frac{3a}{2})




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS