f ( x ) = 2 x 5 + x 4 − 2 x − 1 f(x)=2x^5+x^4-2x-1 f ( x ) = 2 x 5 + x 4 − 2 x − 1 a = 0 , b = 1.5 a=0, b=1.5 a = 0 , b = 1.5
f ( a ) = f ( 0 ) = 2 ( 0 ) 5 + ( 0 ) 4 − 2 ( 0 ) − 1 = − 1 f(a)=f(0)=2(0)^5+(0)^4-2(0)-1=-1 f ( a ) = f ( 0 ) = 2 ( 0 ) 5 + ( 0 ) 4 − 2 ( 0 ) − 1 = − 1
f ( b ) = f ( 1.5 ) = 2 ( 1.5 ) 5 + ( 1.5 ) 4 − 2 ( 1.5 ) − 1 = 16.25 f(b)=f(1.5)=2(1.5)^5+(1.5)^4-2(1.5)-1=16.25 f ( b ) = f ( 1.5 ) = 2 ( 1.5 ) 5 + ( 1.5 ) 4 − 2 ( 1.5 ) − 1 = 16.25
f ( a ) f ( b ) = f ( 0 ) f ( 2 ) = − 1 ( 16.25 ) < 0 f(a)f(b)=f(0)f(2)=-1(16.25)<0 f ( a ) f ( b ) = f ( 0 ) f ( 2 ) = − 1 ( 16.25 ) < 0
x n = a n + b n 2 x_n=\dfrac{a_n+b_n}{2} x n = 2 a n + b n a n + 1 = x n , b n + 1 = b n , f ( a n ) f ( x n ) ≥ 0 a_{n+1}=x_n, b_{n+1}=b_n, f(a_n)f(x_n)\geq0 a n + 1 = x n , b n + 1 = b n , f ( a n ) f ( x n ) ≥ 0
a n + 1 = a n , b n + 1 = x n , f ( b n ) f ( x n ) ≥ 0 a_{n+1}=a_n, b_{n+1}=x_n, f(b_n)f(x_n)\geq0 a n + 1 = a n , b n + 1 = x n , f ( b n ) f ( x n ) ≥ 0
∣ f ( x n ) ∣ ≤ ε = > a n s w e r = x n |f(x_n)|\leq \varepsilon=>answer =x_n ∣ f ( x n ) ∣ ≤ ε => an s w er = x n
n x n f ( x n ) 0 0.75 − 1.708984375 1 1.125 1.955871582 2 0.9375 − 0.654130936 3 1.03125 0.401133597 4 0.984375 − 0.181243243 5 1.0078125 0.095348399 6 0.99609375 − 0.046479699 7 1.001953125 0.023536861 8 0.9990234375 − 0.011693977 9 1.00048828125 0.005865577 10 0.999755859375 − 0.002928138 11 1.0001220703125 0.001465231 12 0.99993896484375 − 0.000732325 13 1.000030517578125 0.000366235 14 0.9999847412109375 − 0.000183099 15 1.00000762939453125 0.000091554 \begin{matrix}
n & x_n & f(x_n)\\
0 & 0.75 & -1.708984375 \\
1 & 1.125 & 1.955871582 \\
2 & 0.9375 & -0.654130936 \\
3 & 1.03125 & 0.401133597 \\
4 & 0.984375 & -0.181243243 \\
5 & 1.0078125 & 0.095348399 \\
6 & 0.99609375 & -0.046479699 \\
7 & 1.001953125 & 0.023536861 \\
8 & 0.9990234375 & -0.011693977 \\
9 & 1.00048828125 & 0.005865577 \\
10 & 0.999755859375 & -0.002928138 \\
11 & 1.0001220703125 & 0.001465231 \\
12 & 0.99993896484375 & -0.000732325 \\
13 & 1.000030517578125 & 0.000366235 \\
14 & 0.9999847412109375 & -0.000183099 \\
15 & 1.00000762939453125 & 0.000091554 \\
\end{matrix} n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x n 0.75 1.125 0.9375 1.03125 0.984375 1.0078125 0.99609375 1.001953125 0.9990234375 1.00048828125 0.999755859375 1.0001220703125 0.99993896484375 1.000030517578125 0.9999847412109375 1.00000762939453125 f ( x n ) − 1.708984375 1.955871582 − 0.654130936 0.401133597 − 0.181243243 0.095348399 − 0.046479699 0.023536861 − 0.011693977 0.005865577 − 0.002928138 0.001465231 − 0.000732325 0.000366235 − 0.000183099 0.000091554
∣ 0.999755859375 − 1.00048828125 1.00048828125 ∣ ⋅ 100 % ≈ \big|\dfrac{0.999755859375-1.00048828125}{1.00048828125}\big|\cdot100\%\approx ∣ ∣ 1.00048828125 0.999755859375 − 1.00048828125 ∣ ∣ ⋅ 100% ≈
≈ 0.073 % > 0.05 % \approx0.073\%>0.05\% ≈ 0.073% > 0.05%
∣ 1.0001220703125 − 0.999755859375 0.999755859375 ∣ ⋅ 100 % ≈ \big|\dfrac{1.0001220703125-0.999755859375}{0.999755859375}\big|\cdot100\%\approx ∣ ∣ 0.999755859375 1.0001220703125 − 0.999755859375 ∣ ∣ ⋅ 100% ≈
≈ 0.037 % < 0.05 % \approx0.037\%<0.05\% ≈ 0.037% < 0.05%
∣ 1.000030517578125 − 0.99993896484375 0.99993896484375 ∣ ⋅ 100 % ≈ \big|\dfrac{1.000030517578125-0.99993896484375}{0.99993896484375}\big|\cdot100\%\approx ∣ ∣ 0.99993896484375 1.000030517578125 − 0.99993896484375 ∣ ∣ ⋅ 100% ≈
≈ 0.009 % < 0.05 % \approx0.009\%<0.05\% ≈ 0.009% < 0.05%
Root is 1.000122 1.000122 1.000122
Comments