Question #139999
find the roots using bisector method Stop until at 15th iteration or when approximate percent relative error is below 0.05%.

2x^5+x^4-2x-1=0
1
Expert's answer
2020-10-27T19:08:40-0400
f(x)=2x5+x42x1f(x)=2x^5+x^4-2x-1

a=0,b=1.5a=0, b=1.5

f(a)=f(0)=2(0)5+(0)42(0)1=1f(a)=f(0)=2(0)^5+(0)^4-2(0)-1=-1

f(b)=f(1.5)=2(1.5)5+(1.5)42(1.5)1=16.25f(b)=f(1.5)=2(1.5)^5+(1.5)^4-2(1.5)-1=16.25

f(a)f(b)=f(0)f(2)=1(16.25)<0f(a)f(b)=f(0)f(2)=-1(16.25)<0

xn=an+bn2x_n=\dfrac{a_n+b_n}{2}

an+1=xn,bn+1=bn,f(an)f(xn)0a_{n+1}=x_n, b_{n+1}=b_n, f(a_n)f(x_n)\geq0

an+1=an,bn+1=xn,f(bn)f(xn)0a_{n+1}=a_n, b_{n+1}=x_n, f(b_n)f(x_n)\geq0

f(xn)ε=>answer=xn|f(x_n)|\leq \varepsilon=>answer =x_n

nxnf(xn)00.751.70898437511.1251.95587158220.93750.65413093631.031250.40113359740.9843750.18124324351.00781250.09534839960.996093750.04647969971.0019531250.02353686180.99902343750.01169397791.000488281250.005865577100.9997558593750.002928138111.00012207031250.001465231120.999938964843750.000732325131.0000305175781250.000366235140.99998474121093750.000183099151.000007629394531250.000091554\begin{matrix} n & x_n & f(x_n)\\ 0 & 0.75 & -1.708984375 \\ 1 & 1.125 & 1.955871582 \\ 2 & 0.9375 & -0.654130936 \\ 3 & 1.03125 & 0.401133597 \\ 4 & 0.984375 & -0.181243243 \\ 5 & 1.0078125 & 0.095348399 \\ 6 & 0.99609375 & -0.046479699 \\ 7 & 1.001953125 & 0.023536861 \\ 8 & 0.9990234375 & -0.011693977 \\ 9 & 1.00048828125 & 0.005865577 \\ 10 & 0.999755859375 & -0.002928138 \\ 11 & 1.0001220703125 & 0.001465231 \\ 12 & 0.99993896484375 & -0.000732325 \\ 13 & 1.000030517578125 & 0.000366235 \\ 14 & 0.9999847412109375 & -0.000183099 \\ 15 & 1.00000762939453125 & 0.000091554 \\ \end{matrix}


0.9997558593751.000488281251.00048828125100%\big|\dfrac{0.999755859375-1.00048828125}{1.00048828125}\big|\cdot100\%\approx

0.073%>0.05%\approx0.073\%>0.05\%

1.00012207031250.9997558593750.999755859375100%\big|\dfrac{1.0001220703125-0.999755859375}{0.999755859375}\big|\cdot100\%\approx

0.037%<0.05%\approx0.037\%<0.05\%




1.0000305175781250.999938964843750.99993896484375100%\big|\dfrac{1.000030517578125-0.99993896484375}{0.99993896484375}\big|\cdot100\%\approx


0.009%<0.05%\approx0.009\%<0.05\%

Root is 1.0001221.000122


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS