"f'(x)=12x^3-24x^2-74x+2"
"x_{n+1}=x_n-\\dfrac{f(x_n)}{f'(x_n)}"
Initial solution "x_0 =-0.5"
"\\begin{matrix}\n n & x_n & f(x_n) & x_{n+1} \\\\\n 0 & -0.5 & 30.9375 & -1.482143\\\\\n 1 & -1.482143 & -3.719695 & -1.295091 \\\\\n 2 & -1.295091 & 1.168422 & -1.332165 \\\\\n 3 & -1.332165 & 0.034568 & -1.333332 \\\\\n 4 & -1.333332 & 0.000037 & -1.333333 \\\\\n 5 & -1.333333 & 0.000000 & -1.333333 \\\\\n\\end{matrix}"
"\\varepsilon =\\big|\\dfrac{-1.482143+0.5}{-0.5}\\big|\\cdot 100\\%=196.4286\\%"
"\\varepsilon =\\big|\\dfrac{ -1.295091+1.482143}{-1.482143}\\big|\\cdot 100\\%=12.6204\\%"
"\\varepsilon =\\big|\\dfrac{-1.332165 +1.295091}{ -1.295091}\\big|\\cdot 100\\%=2.8627\\%"
"\\varepsilon =\\big|\\dfrac{-1.333332+1.332165}{-1.332165}\\big|\\cdot 100\\%=0.0876\\%"
"\\varepsilon =\\big|\\dfrac{-1.333333+1.333332}{-1.333332}\\big|\\cdot 100\\%=0.000075\\%"
"x=-1.333333"
The root is "-1.333333"
Comments
Leave a comment