Question #139991
find the roots using newton raphson. Stop until at 15th iteration or when approximate percent relative error is below 0.05%.

3x^4-8x^3-37x^2+2x+40
1
Expert's answer
2020-10-26T18:59:07-0400
f(x)=3x48x337x2+2x+40f(x)=3x^4-8x^3-37x^2+2x+40

f(x)=12x324x274x+2f'(x)=12x^3-24x^2-74x+2

xn+1=xnf(xn)f(xn)x_{n+1}=x_n-\dfrac{f(x_n)}{f'(x_n)}

Initial solution x0=0.5x_0 =-0.5

nxnf(xn)xn+100.530.93751.48214311.4821433.7196951.29509121.2950911.1684221.33216531.3321650.0345681.33333241.3333320.0000371.33333351.3333330.0000001.333333\begin{matrix} n & x_n & f(x_n) & x_{n+1} \\ 0 & -0.5 & 30.9375 & -1.482143\\ 1 & -1.482143 & -3.719695 & -1.295091 \\ 2 & -1.295091 & 1.168422 & -1.332165 \\ 3 & -1.332165 & 0.034568 & -1.333332 \\ 4 & -1.333332 & 0.000037 & -1.333333 \\ 5 & -1.333333 & 0.000000 & -1.333333 \\ \end{matrix}


ε=xn+1xnxn100%\varepsilon =\big|\dfrac{x_{n+1}-x_n}{x_n}\big|\cdot 100\%

ε=1.482143+0.50.5100%=196.4286%\varepsilon =\big|\dfrac{-1.482143+0.5}{-0.5}\big|\cdot 100\%=196.4286\%

ε=1.295091+1.4821431.482143100%=12.6204%\varepsilon =\big|\dfrac{ -1.295091+1.482143}{-1.482143}\big|\cdot 100\%=12.6204\%

ε=1.332165+1.2950911.295091100%=2.8627%\varepsilon =\big|\dfrac{-1.332165 +1.295091}{ -1.295091}\big|\cdot 100\%=2.8627\%

ε=1.333332+1.3321651.332165100%=0.0876%\varepsilon =\big|\dfrac{-1.333332+1.332165}{-1.332165}\big|\cdot 100\%=0.0876\%

ε=1.333333+1.3333321.333332100%=0.000075%\varepsilon =\big|\dfrac{-1.333333+1.333332}{-1.333332}\big|\cdot 100\%=0.000075\%

x=1.333333x=-1.333333


The root is 1.333333-1.333333


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS