f ( x ) = 3 x 4 − 8 x 3 − 37 x 2 + 2 x + 40 f(x)=3x^4-8x^3-37x^2+2x+40 f ( x ) = 3 x 4 − 8 x 3 − 37 x 2 + 2 x + 40
f ′ ( x ) = 12 x 3 − 24 x 2 − 74 x + 2 f'(x)=12x^3-24x^2-74x+2 f ′ ( x ) = 12 x 3 − 24 x 2 − 74 x + 2
x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1}=x_n-\dfrac{f(x_n)}{f'(x_n)} x n + 1 = x n − f ′ ( x n ) f ( x n ) Initial solution x 0 = − 0.5 x_0 =-0.5 x 0 = − 0.5
n x n f ( x n ) x n + 1 0 − 0.5 30.9375 − 1.482143 1 − 1.482143 − 3.719695 − 1.295091 2 − 1.295091 1.168422 − 1.332165 3 − 1.332165 0.034568 − 1.333332 4 − 1.333332 0.000037 − 1.333333 5 − 1.333333 0.000000 − 1.333333 \begin{matrix}
n & x_n & f(x_n) & x_{n+1} \\
0 & -0.5 & 30.9375 & -1.482143\\
1 & -1.482143 & -3.719695 & -1.295091 \\
2 & -1.295091 & 1.168422 & -1.332165 \\
3 & -1.332165 & 0.034568 & -1.333332 \\
4 & -1.333332 & 0.000037 & -1.333333 \\
5 & -1.333333 & 0.000000 & -1.333333 \\
\end{matrix} n 0 1 2 3 4 5 x n − 0.5 − 1.482143 − 1.295091 − 1.332165 − 1.333332 − 1.333333 f ( x n ) 30.9375 − 3.719695 1.168422 0.034568 0.000037 0.000000 x n + 1 − 1.482143 − 1.295091 − 1.332165 − 1.333332 − 1.333333 − 1.333333
ε = ∣ x n + 1 − x n x n ∣ ⋅ 100 % \varepsilon =\big|\dfrac{x_{n+1}-x_n}{x_n}\big|\cdot 100\% ε = ∣ ∣ x n x n + 1 − x n ∣ ∣ ⋅ 100%
ε = ∣ − 1.482143 + 0.5 − 0.5 ∣ ⋅ 100 % = 196.4286 % \varepsilon =\big|\dfrac{-1.482143+0.5}{-0.5}\big|\cdot 100\%=196.4286\% ε = ∣ ∣ − 0.5 − 1.482143 + 0.5 ∣ ∣ ⋅ 100% = 196.4286%
ε = ∣ − 1.295091 + 1.482143 − 1.482143 ∣ ⋅ 100 % = 12.6204 % \varepsilon =\big|\dfrac{ -1.295091+1.482143}{-1.482143}\big|\cdot 100\%=12.6204\% ε = ∣ ∣ − 1.482143 − 1.295091 + 1.482143 ∣ ∣ ⋅ 100% = 12.6204%
ε = ∣ − 1.332165 + 1.295091 − 1.295091 ∣ ⋅ 100 % = 2.8627 % \varepsilon =\big|\dfrac{-1.332165 +1.295091}{ -1.295091}\big|\cdot 100\%=2.8627\% ε = ∣ ∣ − 1.295091 − 1.332165 + 1.295091 ∣ ∣ ⋅ 100% = 2.8627%
ε = ∣ − 1.333332 + 1.332165 − 1.332165 ∣ ⋅ 100 % = 0.0876 % \varepsilon =\big|\dfrac{-1.333332+1.332165}{-1.332165}\big|\cdot 100\%=0.0876\% ε = ∣ ∣ − 1.332165 − 1.333332 + 1.332165 ∣ ∣ ⋅ 100% = 0.0876%
ε = ∣ − 1.333333 + 1.333332 − 1.333332 ∣ ⋅ 100 % = 0.000075 % \varepsilon =\big|\dfrac{-1.333333+1.333332}{-1.333332}\big|\cdot 100\%=0.000075\% ε = ∣ ∣ − 1.333332 − 1.333333 + 1.333332 ∣ ∣ ⋅ 100% = 0.000075%
x = − 1.333333 x=-1.333333 x = − 1.333333
The root is − 1.333333 -1.333333 − 1.333333
Comments