Question #139562
Use n=6 subdivision to approximate the value of
∫_0^6▒√(x+2) dx by the trapezoidal rule
1
Expert's answer
2020-10-21T17:24:59-0400

06(x+2)∫_0^6\sqrt{(x+2)}

We divide the segment [0;6] into 6 parts and at each node we calculate the value of the integrand

n0123456xn0123456x+21.411.7322.242.452.652.83\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c:c:} n & 0 & 1&2&3&4&5&6\\ \hline x_n & 0 & 1&2&3&4&5&6\\ \hdashline \approx\sqrt{x+2} &1.41&1.73&2&2.24&2.45&2.65&2.83 \end{array}

The formula for calculating the integral by the trapezoid method

abf(x)dxh[f(x0)+f(xn)2+f(x1)+...+f(xn1)] where h=(ba)n∫_a^bf(x)dx\approx{h}[\frac{f(x_0)+f(x_n)}{2}+f(x_{1})+...+f(x_{n-1})]\ where \ h =\frac{(b-a)}{n}

h=606=1h=\frac{6-0}{6}=1

06(x+2)1.41+2.832+1.73+2.0+2.24+2.45+2.65=13.19∫_0^6\sqrt{(x+2)}\approx\frac{1.41+2.83}{2}+1.73+2.0+2.24+2.45+2.65 =13.19


Answer: 06(x+2)13.19∫_0^6\sqrt{(x+2)}\approx13.19


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Assignment Expert
26.10.20, 18:15

Dear sandeep, please clarify your comment. It is not full, it is not clear.

sandeep
26.10.20, 12:37

Evaluate

LATEST TUTORIALS
APPROVED BY CLIENTS