∫ 0 6 ( x + 2 ) ∫_0^6\sqrt{(x+2)} ∫ 0 6 ( x + 2 )
We divide the segment [0;6] into 6 parts and at each node we calculate the value of the integrand
n 0 1 2 3 4 5 6 x n 0 1 2 3 4 5 6 ≈ x + 2 1.41 1.73 2 2.24 2.45 2.65 2.83 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:c:c:c:}
n & 0 & 1&2&3&4&5&6\\ \hline
x_n & 0 & 1&2&3&4&5&6\\
\hdashline
\approx\sqrt{x+2} &1.41&1.73&2&2.24&2.45&2.65&2.83
\end{array} n x n ≈ x + 2 0 0 1.41 1 1 1.73 2 2 2 3 3 2.24 4 4 2.45 5 5 2.65 6 6 2.83
The formula for calculating the integral by the trapezoid method
∫ a b f ( x ) d x ≈ h [ f ( x 0 ) + f ( x n ) 2 + f ( x 1 ) + . . . + f ( x n − 1 ) ] w h e r e h = ( b − a ) n ∫_a^bf(x)dx\approx{h}[\frac{f(x_0)+f(x_n)}{2}+f(x_{1})+...+f(x_{n-1})]\ where \ h =\frac{(b-a)}{n} ∫ a b f ( x ) d x ≈ h [ 2 f ( x 0 ) + f ( x n ) + f ( x 1 ) + ... + f ( x n − 1 )] w h ere h = n ( b − a )
h = 6 − 0 6 = 1 h=\frac{6-0}{6}=1 h = 6 6 − 0 = 1
∫ 0 6 ( x + 2 ) ≈ 1.41 + 2.83 2 + 1.73 + 2.0 + 2.24 + 2.45 + 2.65 = 13.19 ∫_0^6\sqrt{(x+2)}\approx\frac{1.41+2.83}{2}+1.73+2.0+2.24+2.45+2.65 =13.19 ∫ 0 6 ( x + 2 ) ≈ 2 1.41 + 2.83 + 1.73 + 2.0 + 2.24 + 2.45 + 2.65 = 13.19
Answer: ∫ 0 6 ( x + 2 ) ≈ 13.19 ∫_0^6\sqrt{(x+2)}\approx13.19 ∫ 0 6 ( x + 2 ) ≈ 13.19
Comments
Dear sandeep, please clarify your comment. It is not full, it is not clear.
Evaluate