2x5+x4−2x−1=0x4(2x+1)−(2x+1)=0(2x+1)(x4−1)=0(2x+1)(x2+1)(x2−1)=0(2x+1)(x2+1)(x+1)(x−1)=0
x1=−1,x2=21,x3=1
f(x)=2x5+x4−2x−1
f′(x)=10x4+4x3−2
xn+1=xn−f′(xn)f(xn) Initial solution x0=0
f(0)=−1,f′(0)=−2,x1=0−−2−1=−0.5n1xn−0.5f(xn)0f′(xn)−1.875xn+1f(xn+1) x=−0.5
Initial solution x0=2
f(2)=75,f′(0)=190,x1=2−19075=1.60526n123456xn1.605261.311891.117901.023261.001111.00000f(xn)23.748207.109861.817720.293430.013320xn+11.311891.117901.023261.001111.000001.00000f(xn+1)7.109861.817720.293430.013320.00003
ε=∣∣nini+1−ni∣∣⋅100%
ε=∣∣1.605261.31189−1.60526∣∣⋅100%=18.26%
ε=∣∣1.311891.11790−1.31189∣∣⋅100%=14.79%
ε=∣∣1.117901.02326−1.11790∣∣⋅100%=8.47%
ε=∣∣1.023261.00111−1.02326∣∣⋅100%=2.16%
ε=∣∣1.001111.00000−1.00111∣∣⋅100%=0.11%
ε=∣∣1.000001.00000−1.00000∣∣⋅100%=0% x=1
Comments
Leave a comment