2 x 5 + x 4 − 2 x − 1 = 0 2x^5+x^4-2x-1=0 2 x 5 + x 4 − 2 x − 1 = 0 x 4 ( 2 x + 1 ) − ( 2 x + 1 ) = 0 x^4(2x+1)-(2x+1)=0 x 4 ( 2 x + 1 ) − ( 2 x + 1 ) = 0 ( 2 x + 1 ) ( x 4 − 1 ) = 0 (2x+1)(x^4-1)=0 ( 2 x + 1 ) ( x 4 − 1 ) = 0 ( 2 x + 1 ) ( x 2 + 1 ) ( x 2 − 1 ) = 0 (2x+1)(x^2+1)(x^2-1)=0 ( 2 x + 1 ) ( x 2 + 1 ) ( x 2 − 1 ) = 0 ( 2 x + 1 ) ( x 2 + 1 ) ( x + 1 ) ( x − 1 ) = 0 (2x+1)(x^2+1)(x+1)(x-1)=0 ( 2 x + 1 ) ( x 2 + 1 ) ( x + 1 ) ( x − 1 ) = 0
x 1 = − 1 , x 2 = 1 2 , x 3 = 1 x1=-1, x2={1\over 2}, x3=1 x 1 = − 1 , x 2 = 2 1 , x 3 = 1
f ( x ) = 2 x 5 + x 4 − 2 x − 1 f(x)=2x^5+x^4-2x-1 f ( x ) = 2 x 5 + x 4 − 2 x − 1
f ′ ( x ) = 10 x 4 + 4 x 3 − 2 f'(x)=10x^4+4x^3-2 f ′ ( x ) = 10 x 4 + 4 x 3 − 2
x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1}=x_n-\dfrac{f(x_n)}{f'(x_n)} x n + 1 = x n − f ′ ( x n ) f ( x n ) Initial solution x 0 = 0 x_0=0 x 0 = 0
f ( 0 ) = − 1 , f ′ ( 0 ) = − 2 , x 1 = 0 − − 1 − 2 = − 0.5 f(0)=-1, f'(0)=-2, x_1=0-{-1 \over -2}=-0.5 f ( 0 ) = − 1 , f ′ ( 0 ) = − 2 , x 1 = 0 − − 2 − 1 = − 0.5 n x n f ( x n ) f ′ ( x n ) x n + 1 f ( x n + 1 ) 1 − 0.5 0 − 1.875 \begin{matrix}
n & x_n & f(x_n) & f'(x_n) & x_{n+1} & f(x_{n+1}) \\
1 & -0.5 & 0 & -1.875
\end{matrix} n 1 x n − 0.5 f ( x n ) 0 f ′ ( x n ) − 1.875 x n + 1 f ( x n + 1 ) x = − 0.5 x=-0.5 x = − 0.5
Initial solution x 0 = 2 x_0=2 x 0 = 2
f ( 2 ) = 75 , f ′ ( 0 ) = 190 , x 1 = 2 − 75 190 = 1.60526 f(2)=75, f'(0)=190, x_1=2-{75 \over190}=1.60526 f ( 2 ) = 75 , f ′ ( 0 ) = 190 , x 1 = 2 − 190 75 = 1.60526 n x n f ( x n ) x n + 1 f ( x n + 1 ) 1 1.60526 23.74820 1.31189 7.10986 2 1.31189 7.10986 1.11790 1.81772 3 1.11790 1.81772 1.02326 0.29343 4 1.02326 0.29343 1.00111 0.01332 5 1.00111 0.01332 1.00000 0.00003 6 1.00000 0 1.00000 \begin{matrix}
n & x_n & f(x_n) & x_{n+1} & f(x_{n+1}) \\
1 & 1.60526 & 23.74820 & 1.31189 & 7.10986 \\
2 & 1.31189 & 7.10986 & 1.11790 & 1.81772 \\
3 & 1.11790 & 1.81772 & 1.02326 & 0.29343 \\
4 & 1.02326 & 0.29343 & 1.00111 & 0.01332 \\
5 & 1.00111 & 0.01332 & 1.00000 & 0.00003\\
6 & 1.00000 & 0 & 1.00000
\end{matrix} n 1 2 3 4 5 6 x n 1.60526 1.31189 1.11790 1.02326 1.00111 1.00000 f ( x n ) 23.74820 7.10986 1.81772 0.29343 0.01332 0 x n + 1 1.31189 1.11790 1.02326 1.00111 1.00000 1.00000 f ( x n + 1 ) 7.10986 1.81772 0.29343 0.01332 0.00003
ε = ∣ n i + 1 − n i n i ∣ ⋅ 100 % \varepsilon =\big|\dfrac{n_{i+1}-n_i}{n_i}\big|\cdot 100\% ε = ∣ ∣ n i n i + 1 − n i ∣ ∣ ⋅ 100%
ε = ∣ 1.31189 − 1.60526 1.60526 ∣ ⋅ 100 % = 18.26 % \varepsilon =\big|\dfrac{1.31189-1.60526}{1.60526}\big|\cdot 100\%=18.26\% ε = ∣ ∣ 1.60526 1.31189 − 1.60526 ∣ ∣ ⋅ 100% = 18.26%
ε = ∣ 1.11790 − 1.31189 1.31189 ∣ ⋅ 100 % = 14.79 % \varepsilon =\big|\dfrac{1.11790-1.31189}{1.31189}\big|\cdot 100\%=14.79\% ε = ∣ ∣ 1.31189 1.11790 − 1.31189 ∣ ∣ ⋅ 100% = 14.79%
ε = ∣ 1.02326 − 1.11790 1.11790 ∣ ⋅ 100 % = 8.47 % \varepsilon =\big|\dfrac{1.02326-1.11790}{1.11790}\big|\cdot 100\%=8.47\% ε = ∣ ∣ 1.11790 1.02326 − 1.11790 ∣ ∣ ⋅ 100% = 8.47%
ε = ∣ 1.00111 − 1.02326 1.02326 ∣ ⋅ 100 % = 2.16 % \varepsilon =\big|\dfrac{1.00111-1.02326}{1.02326}\big|\cdot 100\%=2.16\% ε = ∣ ∣ 1.02326 1.00111 − 1.02326 ∣ ∣ ⋅ 100% = 2.16%
ε = ∣ 1.00000 − 1.00111 1.00111 ∣ ⋅ 100 % = 0.11 % \varepsilon =\big|\dfrac{1.00000-1.00111}{1.00111}\big|\cdot 100\%=0.11\% ε = ∣ ∣ 1.00111 1.00000 − 1.00111 ∣ ∣ ⋅ 100% = 0.11%
ε = ∣ 1.00000 − 1.00000 1.00000 ∣ ⋅ 100 % = 0 % \varepsilon =\big|\dfrac{1.00000-1.00000}{1.00000}\big|\cdot 100\%=0\% ε = ∣ ∣ 1.00000 1.00000 − 1.00000 ∣ ∣ ⋅ 100% = 0% x = 1 x=1 x = 1
Comments