Answer to Question #139399 in Quantitative Methods for elle

Question #139399
find the roots using newton rhapson. Stop until at 15th iteration or when approximate percent relative error is below 0.05%.

2x^5+x^4-2x-1=0
1
Expert's answer
2020-10-22T17:50:28-0400
2x5+x42x1=02x^5+x^4-2x-1=0x4(2x+1)(2x+1)=0x^4(2x+1)-(2x+1)=0(2x+1)(x41)=0(2x+1)(x^4-1)=0(2x+1)(x2+1)(x21)=0(2x+1)(x^2+1)(x^2-1)=0(2x+1)(x2+1)(x+1)(x1)=0(2x+1)(x^2+1)(x+1)(x-1)=0

x1=1,x2=12,x3=1x1=-1, x2={1\over 2}, x3=1

f(x)=2x5+x42x1f(x)=2x^5+x^4-2x-1


f(x)=10x4+4x32f'(x)=10x^4+4x^3-2

xn+1=xnf(xn)f(xn)x_{n+1}=x_n-\dfrac{f(x_n)}{f'(x_n)}

Initial solution x0=0x_0=0


f(0)=1,f(0)=2,x1=012=0.5f(0)=-1, f'(0)=-2, x_1=0-{-1 \over -2}=-0.5nxnf(xn)f(xn)xn+1f(xn+1)10.501.875\begin{matrix} n & x_n & f(x_n) & f'(x_n) & x_{n+1} & f(x_{n+1}) \\ 1 & -0.5 & 0 & -1.875 \end{matrix}

x=0.5x=-0.5


Initial solution x0=2x_0=2


f(2)=75,f(0)=190,x1=275190=1.60526f(2)=75, f'(0)=190, x_1=2-{75 \over190}=1.60526nxnf(xn)xn+1f(xn+1)11.6052623.748201.311897.1098621.311897.109861.117901.8177231.117901.817721.023260.2934341.023260.293431.001110.0133251.001110.013321.000000.0000361.0000001.00000\begin{matrix} n & x_n & f(x_n) & x_{n+1} & f(x_{n+1}) \\ 1 & 1.60526 & 23.74820 & 1.31189 & 7.10986 \\ 2 & 1.31189 & 7.10986 & 1.11790 & 1.81772 \\ 3 & 1.11790 & 1.81772 & 1.02326 & 0.29343 \\ 4 & 1.02326 & 0.29343 & 1.00111 & 0.01332 \\ 5 & 1.00111 & 0.01332 & 1.00000 & 0.00003\\ 6 & 1.00000 & 0 & 1.00000 \end{matrix}



ε=ni+1nini100%\varepsilon =\big|\dfrac{n_{i+1}-n_i}{n_i}\big|\cdot 100\%

ε=1.311891.605261.60526100%=18.26%\varepsilon =\big|\dfrac{1.31189-1.60526}{1.60526}\big|\cdot 100\%=18.26\%

ε=1.117901.311891.31189100%=14.79%\varepsilon =\big|\dfrac{1.11790-1.31189}{1.31189}\big|\cdot 100\%=14.79\%

ε=1.023261.117901.11790100%=8.47%\varepsilon =\big|\dfrac{1.02326-1.11790}{1.11790}\big|\cdot 100\%=8.47\%

ε=1.001111.023261.02326100%=2.16%\varepsilon =\big|\dfrac{1.00111-1.02326}{1.02326}\big|\cdot 100\%=2.16\%

ε=1.000001.001111.00111100%=0.11%\varepsilon =\big|\dfrac{1.00000-1.00111}{1.00111}\big|\cdot 100\%=0.11\%

ε=1.000001.000001.00000100%=0%\varepsilon =\big|\dfrac{1.00000-1.00000}{1.00000}\big|\cdot 100\%=0\%

x=1x=1



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment