3x4−8x3−37x2+2x+40=
=(3x4−3x3)−(5x3−5x2)−(42x2−42x)−(40x+40)=
=(x−1)(3x3−5x2−42x−40)=
=(x−1)((3x3+6x2)−(11x2+22x)−(20x+40))=
=(x+2)(x−1)(3x2−11x−20)=
=(x+2)(x−1)((3x2−15x+(4x−20))=
=(x+2)(x−1)(x−5)(3x+4) x1=−2,x2=−34≈−1.333,x3=1,x4=5
We know that there is a solution for the equation 3x4−8x3−37x2+2x+40=0 in [0,2].
x=(373x4−8x3+2x+40)1/2
xi+1=(373xi4−8xi3+2xi+40)1/2
i012345678xi01.0397500.9944891.0007420.9999001.0000140.9999981.0000001.000000
ε=∣∣nini+1−ni∣∣⋅100%
ε=∣∣01.039750−0∣∣⋅100%=undefined
ε=∣∣1.0397500.994489−1.039750∣∣⋅100%=4.5512%
ε=∣∣0.9944891.000742−0.994489∣∣⋅100%=0.6248%
ε=∣∣1.0007420.999900−1.000742∣∣⋅100%=0.0841%
ε=∣∣0.9999001.000014−0.999900∣∣⋅100%=0.0114%
ε=∣∣1.0000140.999998−1.000014∣∣⋅100%=0.0016%
ε=∣∣0.9999981.000000−0.999998∣∣⋅100%=0.0002%
x=1.000014
The root is 1.000014
Comments