3 x 4 − 8 x 3 − 37 x 2 + 2 x + 40 = 3x^4-8x^3-37x^2+2x+40= 3 x 4 − 8 x 3 − 37 x 2 + 2 x + 40 =
= ( 3 x 4 − 3 x 3 ) − ( 5 x 3 − 5 x 2 ) − ( 42 x 2 − 42 x ) − ( 40 x + 40 ) = =(3x^4-3x^3) -(5x^3-5x^2)-(42x^2-42x)-(40x+40)= = ( 3 x 4 − 3 x 3 ) − ( 5 x 3 − 5 x 2 ) − ( 42 x 2 − 42 x ) − ( 40 x + 40 ) =
= ( x − 1 ) ( 3 x 3 − 5 x 2 − 42 x − 40 ) = =(x-1)(3x^3-5x^2-42x-40)= = ( x − 1 ) ( 3 x 3 − 5 x 2 − 42 x − 40 ) =
= ( x − 1 ) ( ( 3 x 3 + 6 x 2 ) − ( 11 x 2 + 22 x ) − ( 20 x + 40 ) ) = =(x-1)((3x^3+6x^2)-(11x^2+22x)-(20x+40))= = ( x − 1 ) (( 3 x 3 + 6 x 2 ) − ( 11 x 2 + 22 x ) − ( 20 x + 40 )) =
= ( x + 2 ) ( x − 1 ) ( 3 x 2 − 11 x − 20 ) = =(x+2)(x-1)(3x^2-11x-20)= = ( x + 2 ) ( x − 1 ) ( 3 x 2 − 11 x − 20 ) =
= ( x + 2 ) ( x − 1 ) ( ( 3 x 2 − 15 x + ( 4 x − 20 ) ) = =(x+2)(x-1)((3x^2-15x+(4x-20))= = ( x + 2 ) ( x − 1 ) (( 3 x 2 − 15 x + ( 4 x − 20 )) =
= ( x + 2 ) ( x − 1 ) ( x − 5 ) ( 3 x + 4 ) =(x+2)(x-1)(x-5)(3x+4) = ( x + 2 ) ( x − 1 ) ( x − 5 ) ( 3 x + 4 ) x 1 = − 2 , x 2 = − 4 3 ≈ − 1.333 , x 3 = 1 , x 4 = 5 x1=-2, x2=-\dfrac{4}{3}\approx-1.333, x3=1,x4=5 x 1 = − 2 , x 2 = − 3 4 ≈ − 1.333 , x 3 = 1 , x 4 = 5
We know that there is a solution for the equation 3 x 4 − 8 x 3 − 37 x 2 + 2 x + 40 = 0 3x^4-8x^3-37x^2+2x+40=0 3 x 4 − 8 x 3 − 37 x 2 + 2 x + 40 = 0 in [ 0 , 2 ] . [0,2]. [ 0 , 2 ] .
x = ( 3 x 4 − 8 x 3 + 2 x + 40 37 ) 1 / 2 x=\big(\dfrac{3x^4-8x^3+2x+40}{37}\big)^{1/2} x = ( 37 3 x 4 − 8 x 3 + 2 x + 40 ) 1/2
x i + 1 = ( 3 x i 4 − 8 x i 3 + 2 x i + 40 37 ) 1 / 2 x_{i+1}=\big(\dfrac{3x_i^4-8x_i^3+2x_i+40}{37}\big)^{1/2} x i + 1 = ( 37 3 x i 4 − 8 x i 3 + 2 x i + 40 ) 1/2
i x i 0 0 1 1.039750 2 0.994489 3 1.000742 4 0.999900 5 1.000014 6 0.999998 7 1.000000 8 1.000000 \begin{matrix}
i & x_i \\
0 & 0\\
1 & 1.039750 \\
2 & 0.994489\\
3 & 1.000742\\
4 & 0.999900\\
5 & 1.000014\\
6 & 0.999998\\
7 & 1.000000 \\
8 & 1.000000\\
\end{matrix} i 0 1 2 3 4 5 6 7 8 x i 0 1.039750 0.994489 1.000742 0.999900 1.000014 0.999998 1.000000 1.000000
ε = ∣ n i + 1 − n i n i ∣ ⋅ 100 % \varepsilon =\big|\dfrac{n_{i+1}-n_i}{n_i}\big|\cdot 100\% ε = ∣ ∣ n i n i + 1 − n i ∣ ∣ ⋅ 100%
ε = ∣ 1.039750 − 0 0 ∣ ⋅ 100 % = u n d e f i n e d \varepsilon =\big|\dfrac{1.039750-0}{0}\big|\cdot 100\%=undefined ε = ∣ ∣ 0 1.039750 − 0 ∣ ∣ ⋅ 100% = u n d e f in e d
ε = ∣ 0.994489 − 1.039750 1.039750 ∣ ⋅ 100 % = 4.5512 % \varepsilon =\big|\dfrac{0.994489-1.039750}{1.039750}\big|\cdot 100\%=4.5512\% ε = ∣ ∣ 1.039750 0.994489 − 1.039750 ∣ ∣ ⋅ 100% = 4.5512%
ε = ∣ 1.000742 − 0.994489 0.994489 ∣ ⋅ 100 % = 0.6248 % \varepsilon =\big|\dfrac{1.000742-0.994489}{0.994489}\big|\cdot 100\%=0.6248\% ε = ∣ ∣ 0.994489 1.000742 − 0.994489 ∣ ∣ ⋅ 100% = 0.6248%
ε = ∣ 0.999900 − 1.000742 1.000742 ∣ ⋅ 100 % = 0.0841 % \varepsilon =\big|\dfrac{0.999900-1.000742}{1.000742}\big|\cdot 100\%=0.0841\% ε = ∣ ∣ 1.000742 0.999900 − 1.000742 ∣ ∣ ⋅ 100% = 0.0841%
ε = ∣ 1.000014 − 0.999900 0.999900 ∣ ⋅ 100 % = 0.0114 % \varepsilon =\big|\dfrac{1.000014-0.999900}{0.999900}\big|\cdot 100\%=0.0114\% ε = ∣ ∣ 0.999900 1.000014 − 0.999900 ∣ ∣ ⋅ 100% = 0.0114%
ε = ∣ 0.999998 − 1.000014 1.000014 ∣ ⋅ 100 % = 0.0016 % \varepsilon =\big|\dfrac{0.999998-1.000014}{1.000014}\big|\cdot 100\%=0.0016\% ε = ∣ ∣ 1.000014 0.999998 − 1.000014 ∣ ∣ ⋅ 100% = 0.0016%
ε = ∣ 1.000000 − 0.999998 0.999998 ∣ ⋅ 100 % = 0.0002 % \varepsilon =\big|\dfrac{1.000000-0.999998}{0.999998}\big|\cdot 100\%=0.0002\% ε = ∣ ∣ 0.999998 1.000000 − 0.999998 ∣ ∣ ⋅ 100% = 0.0002%
x = 1.000014 x=1.000014 x = 1.000014
The root is 1.000014 1.000014 1.000014
Comments