Question #139398
find the roots using simple fixed point iteration. Stop until at 15th iteration or when approximate percent relative error is below 0.05%.

3x^4-8x^3-37x^2+2x+40
1
Expert's answer
2020-10-22T17:26:28-0400
3x48x337x2+2x+40=3x^4-8x^3-37x^2+2x+40=

=(3x43x3)(5x35x2)(42x242x)(40x+40)==(3x^4-3x^3) -(5x^3-5x^2)-(42x^2-42x)-(40x+40)=

=(x1)(3x35x242x40)==(x-1)(3x^3-5x^2-42x-40)=

=(x1)((3x3+6x2)(11x2+22x)(20x+40))==(x-1)((3x^3+6x^2)-(11x^2+22x)-(20x+40))=

=(x+2)(x1)(3x211x20)==(x+2)(x-1)(3x^2-11x-20)=

=(x+2)(x1)((3x215x+(4x20))==(x+2)(x-1)((3x^2-15x+(4x-20))=

=(x+2)(x1)(x5)(3x+4)=(x+2)(x-1)(x-5)(3x+4)

x1=2,x2=431.333,x3=1,x4=5x1=-2, x2=-\dfrac{4}{3}\approx-1.333, x3=1,x4=5

We know that there is a solution for the equation 3x48x337x2+2x+40=03x^4-8x^3-37x^2+2x+40=0 in [0,2].[0,2].


x=(3x48x3+2x+4037)1/2x=\big(\dfrac{3x^4-8x^3+2x+40}{37}\big)^{1/2}

xi+1=(3xi48xi3+2xi+4037)1/2x_{i+1}=\big(\dfrac{3x_i^4-8x_i^3+2x_i+40}{37}\big)^{1/2}

ixi0011.03975020.99448931.00074240.99990051.00001460.99999871.00000081.000000\begin{matrix} i & x_i \\ 0 & 0\\ 1 & 1.039750 \\ 2 & 0.994489\\ 3 & 1.000742\\ 4 & 0.999900\\ 5 & 1.000014\\ 6 & 0.999998\\ 7 & 1.000000 \\ 8 & 1.000000\\ \end{matrix}


ε=ni+1nini100%\varepsilon =\big|\dfrac{n_{i+1}-n_i}{n_i}\big|\cdot 100\%

ε=1.03975000100%=undefined\varepsilon =\big|\dfrac{1.039750-0}{0}\big|\cdot 100\%=undefined

ε=0.9944891.0397501.039750100%=4.5512%\varepsilon =\big|\dfrac{0.994489-1.039750}{1.039750}\big|\cdot 100\%=4.5512\%

ε=1.0007420.9944890.994489100%=0.6248%\varepsilon =\big|\dfrac{1.000742-0.994489}{0.994489}\big|\cdot 100\%=0.6248\%

ε=0.9999001.0007421.000742100%=0.0841%\varepsilon =\big|\dfrac{0.999900-1.000742}{1.000742}\big|\cdot 100\%=0.0841\%

ε=1.0000140.9999000.999900100%=0.0114%\varepsilon =\big|\dfrac{1.000014-0.999900}{0.999900}\big|\cdot 100\%=0.0114\%

ε=0.9999981.0000141.000014100%=0.0016%\varepsilon =\big|\dfrac{0.999998-1.000014}{1.000014}\big|\cdot 100\%=0.0016\%

ε=1.0000000.9999980.999998100%=0.0002%\varepsilon =\big|\dfrac{1.000000-0.999998}{0.999998}\big|\cdot 100\%=0.0002\%

x=1.000014x=1.000014


The root is 1.0000141.000014



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS