"=(2x+1)(x^4-1)=(2x+1)(x^2-1)(x^2+1)="
"=(2x+1)(x+1)(x-1)(x^2+1)"
"x1=-1, x2=-\\dfrac{1}{2}, x3=1"
We know that there is a solution for the equation "2x^5+x^4-2x-1=0" in "[0.5,1.5]."
"x_{i+1}=\\big(\\dfrac{-x_i^4+2x_i+1}{2}\\big)^{1\/5}"
"\\begin{matrix}\n i & x_i \\\\\n 0 & 0.5\\\\\n 1 & 0.993670 \\\\\n 2 & 1.001239\\\\\n 3 & 0.999751\\\\\n 4 & 1.000050\\\\\n 5 & 0.999990\\\\\n 6 & 1.000002\\\\\n 7 &1.000000 \\\\\n 8 & 1.000000\\\\\n \n\\end{matrix}"
"\\varepsilon =\\big|\\dfrac{0.993670-0.5}{0.5}\\big|\\cdot 100\\%=98.734\\%"
"\\varepsilon =\\big|\\dfrac{1.001239-0.993670}{0.993670}\\big|\\cdot 100\\%=0.7617\\%"
"\\varepsilon =\\big|\\dfrac{0.999751-1.001239}{1.001239}\\big|\\cdot 100\\%=0.1486\\%"
"\\varepsilon =\\big|\\dfrac{1.000050-0.999751}{0.999751}\\big|\\cdot 100\\%=0.0299\\%"
"\\varepsilon =\\big|\\dfrac{0.999990-1.000050}{1.000050}\\big|\\cdot 100\\%=0.0060\\%"
"\\varepsilon =\\big|\\dfrac{0.999998-0.999990}{0.999990}\\big|\\cdot 100\\%=0.0016\\%"
"\\varepsilon =\\big|\\dfrac{1.000002-0.999998}{0.999998}\\big|\\cdot 100\\%=0.0012\\%"
"\\varepsilon =\\big|\\dfrac{1.000000-1.000002}{1.000002}\\big|\\cdot 100\\%=0.0002\\%"
If "\\varepsilon\\leq0.05\\%," then "x=0.999998"
The root is "1.00000"
Comments
Leave a comment