2 x 5 + x 4 − 2 x − 1 = x 4 ( 2 x + 1 ) − ( 2 x + 1 ) = 2x^5+x^4-2x-1=x^4(2x+1)-(2x+1)= 2 x 5 + x 4 − 2 x − 1 = x 4 ( 2 x + 1 ) − ( 2 x + 1 ) =
= ( 2 x + 1 ) ( x 4 − 1 ) = ( 2 x + 1 ) ( x 2 − 1 ) ( x 2 + 1 ) = =(2x+1)(x^4-1)=(2x+1)(x^2-1)(x^2+1)= = ( 2 x + 1 ) ( x 4 − 1 ) = ( 2 x + 1 ) ( x 2 − 1 ) ( x 2 + 1 ) =
= ( 2 x + 1 ) ( x + 1 ) ( x − 1 ) ( x 2 + 1 ) =(2x+1)(x+1)(x-1)(x^2+1) = ( 2 x + 1 ) ( x + 1 ) ( x − 1 ) ( x 2 + 1 ) x 1 = − 1 , x 2 = − 1 2 , x 3 = 1 x1=-1, x2=-\dfrac{1}{2}, x3=1 x 1 = − 1 , x 2 = − 2 1 , x 3 = 1
We know that there is a solution for the equation 2 x 5 + x 4 − 2 x − 1 = 0 2x^5+x^4-2x-1=0 2 x 5 + x 4 − 2 x − 1 = 0 in [ 0.5 , 1.5 ] . [0.5,1.5]. [ 0.5 , 1.5 ] .
x = ( − x 4 + 2 x + 1 2 ) 1 / 5 x=\big(\dfrac{-x^4+2x+1}{2}\big)^{1/5} x = ( 2 − x 4 + 2 x + 1 ) 1/5
x i + 1 = ( − x i 4 + 2 x i + 1 2 ) 1 / 5 x_{i+1}=\big(\dfrac{-x_i^4+2x_i+1}{2}\big)^{1/5} x i + 1 = ( 2 − x i 4 + 2 x i + 1 ) 1/5
i x i 0 0.5 1 0.993670 2 1.001239 3 0.999751 4 1.000050 5 0.999990 6 1.000002 7 1.000000 8 1.000000 \begin{matrix}
i & x_i \\
0 & 0.5\\
1 & 0.993670 \\
2 & 1.001239\\
3 & 0.999751\\
4 & 1.000050\\
5 & 0.999990\\
6 & 1.000002\\
7 &1.000000 \\
8 & 1.000000\\
\end{matrix} i 0 1 2 3 4 5 6 7 8 x i 0.5 0.993670 1.001239 0.999751 1.000050 0.999990 1.000002 1.000000 1.000000
ε = ∣ n i + 1 − n i n i ∣ ⋅ 100 % \varepsilon =\big|\dfrac{n_{i+1}-n_i}{n_i}\big|\cdot 100\% ε = ∣ ∣ n i n i + 1 − n i ∣ ∣ ⋅ 100%
ε = ∣ 0.993670 − 0.5 0.5 ∣ ⋅ 100 % = 98.734 % \varepsilon =\big|\dfrac{0.993670-0.5}{0.5}\big|\cdot 100\%=98.734\% ε = ∣ ∣ 0.5 0.993670 − 0.5 ∣ ∣ ⋅ 100% = 98.734%
ε = ∣ 1.001239 − 0.993670 0.993670 ∣ ⋅ 100 % = 0.7617 % \varepsilon =\big|\dfrac{1.001239-0.993670}{0.993670}\big|\cdot 100\%=0.7617\% ε = ∣ ∣ 0.993670 1.001239 − 0.993670 ∣ ∣ ⋅ 100% = 0.7617%
ε = ∣ 0.999751 − 1.001239 1.001239 ∣ ⋅ 100 % = 0.1486 % \varepsilon =\big|\dfrac{0.999751-1.001239}{1.001239}\big|\cdot 100\%=0.1486\% ε = ∣ ∣ 1.001239 0.999751 − 1.001239 ∣ ∣ ⋅ 100% = 0.1486%
ε = ∣ 1.000050 − 0.999751 0.999751 ∣ ⋅ 100 % = 0.0299 % \varepsilon =\big|\dfrac{1.000050-0.999751}{0.999751}\big|\cdot 100\%=0.0299\% ε = ∣ ∣ 0.999751 1.000050 − 0.999751 ∣ ∣ ⋅ 100% = 0.0299%
ε = ∣ 0.999990 − 1.000050 1.000050 ∣ ⋅ 100 % = 0.0060 % \varepsilon =\big|\dfrac{0.999990-1.000050}{1.000050}\big|\cdot 100\%=0.0060\% ε = ∣ ∣ 1.000050 0.999990 − 1.000050 ∣ ∣ ⋅ 100% = 0.0060%
ε = ∣ 0.999998 − 0.999990 0.999990 ∣ ⋅ 100 % = 0.0016 % \varepsilon =\big|\dfrac{0.999998-0.999990}{0.999990}\big|\cdot 100\%=0.0016\% ε = ∣ ∣ 0.999990 0.999998 − 0.999990 ∣ ∣ ⋅ 100% = 0.0016%
ε = ∣ 1.000002 − 0.999998 0.999998 ∣ ⋅ 100 % = 0.0012 % \varepsilon =\big|\dfrac{1.000002-0.999998}{0.999998}\big|\cdot 100\%=0.0012\% ε = ∣ ∣ 0.999998 1.000002 − 0.999998 ∣ ∣ ⋅ 100% = 0.0012%
ε = ∣ 1.000000 − 1.000002 1.000002 ∣ ⋅ 100 % = 0.0002 % \varepsilon =\big|\dfrac{1.000000-1.000002}{1.000002}\big|\cdot 100\%=0.0002\% ε = ∣ ∣ 1.000002 1.000000 − 1.000002 ∣ ∣ ⋅ 100% = 0.0002% If ε ≤ 0.05 % , \varepsilon\leq0.05\%, ε ≤ 0.05% , then x = 0.999998 x=0.999998 x = 0.999998
The root is 1.00000 1.00000 1.00000
Comments