Answer to Question #122820 in Math for Ojugbele Daniel

Question #122820
The sum of the first n terms of a series is 2n^2 -2. Find the nth term and show that the series is an arithmetic progression.
1
Expert's answer
2020-06-22T18:13:06-0400
Sn=2n2nS_n=2n^2-n

S1=2(1)21=1=>a1=1S_1=2(1)^2-1=1=>a_1=1S2=S1+a2=1+a2=2(2)22=6=>a2=5S_2=S_1+a_2=1+a_2=2(2)^2-2=6=>a_2=5S3=S2+a3=6+a3=2(3)23=15=>a3=9S_3=S_2+a_3=6+a_3=2(3)^2-3=15=>a_3=9S4=S3+a4=15+a4=2(4)24=28=>a4=13S_4=S_3+a_4=15+a_4=2(4)^2-4=28=>a_4=13S5=S4+a5=28+a5=2(5)25=45=>a5=17S_5=S_4+a_5=28+a_5=2(5)^2-5=45=>a_5=17......Sn+1=Sn+an+1=2(n)2n+an+1=S_{n+1}=S_n+a_{n+1}=2(n)^2-n+a_{n+1}==2(n+1)2(n+1)=>an+1=4n+1=2(n+1)^2-(n+1)=>a_{n+1}=4n+1

an+1=4n+1a_{n+1}=4n+1


an=1+4(n1)a_n=1+4(n-1)


d=an+1an=4d=a_{n+1}-a_n=4

The series is an arithmetic progression: a1=1,d=4.a_1=1, d=4.


a1=a1+d(n1)=1+4(n1)a_1=a_1+d(n-1)=1+4(n-1)


Sn=2a1+d(n1)2n=n+2n(n1)=2n2nS_n={2a_1+d(n-1)\over 2}\cdot n=n+2n(n-1)=2n^2-n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment