Sn=2n2−n
S1=2(1)2−1=1=>a1=1S2=S1+a2=1+a2=2(2)2−2=6=>a2=5S3=S2+a3=6+a3=2(3)2−3=15=>a3=9S4=S3+a4=15+a4=2(4)2−4=28=>a4=13S5=S4+a5=28+a5=2(5)2−5=45=>a5=17...Sn+1=Sn+an+1=2(n)2−n+an+1==2(n+1)2−(n+1)=>an+1=4n+1an+1=4n+1
an=1+4(n−1)
d=an+1−an=4
The series is an arithmetic progression: a1=1,d=4.
a1=a1+d(n−1)=1+4(n−1)
Sn=22a1+d(n−1)⋅n=n+2n(n−1)=2n2−n
Comments
Leave a comment