Question #121477
The sales of a company from 1993-1998 are given below:

Year 1993 1994 1995 1996 1997 1998
Sales (in lakhs of rupees) 40 45 50 55 60 65
Fit a linear curve using the least squares method. Hence find out the company’s sales in 1999.
1
Expert's answer
2020-06-11T19:15:56-0400

Let x=x= the number of years since 1993, y=y= sales (in lakhs of rupees)


xyxyx2y204000160014545120252501004250035516593025460240163600565325254225Sum=153158755516975\def\arraystretch{1.5} \begin{array}{c:c:c} & x & y & xy & x^2 & y^2 \\ \hline & 0 & 40 & 0 & 0 & 1600 \\ \hdashline & 1 & 45 & 45 & 1 & 2025 \\ & 2 & 50 & 100 & 4 & 2500\\ \hdashline & 3 & 55 & 165 & 9 & 3025\\ & 4 & 60 & 240 & 16 & 3600 \\ & 5 & 65 & 325 & 25 & 4225\\ \hdashline Sum= & 15 & 315 & 875 & 55 & 16975 \end{array}

xˉ=1ni=1nxi=2.5,yˉ=1ni=1nyi=52.5\bar{x}={1\over n}\displaystyle\sum_{i=1}^nx_i=2.5, \bar{y}={1\over n}\displaystyle\sum_{i=1}^ny_i=52.5

Sxx=i=1nxi21n(i=1nxi)2=17.5S_{xx}=\displaystyle\sum_{i=1}^nx_i^2 -{1\over n}(\displaystyle\sum_{i=1}^nx_i)^2=17.5

Syy=i=1nyi21n(i=1nyi)2=437.5S_{yy}=\displaystyle\sum_{i=1}^ny_i^2 -{1\over n}(\displaystyle\sum_{i=1}^ny_i)^2=437.5

Sxy=i=1nxiyi1n(i=1nxi)(i=1nyi)=87.5S_{xy}=\displaystyle\sum_{i=1}^nx_iy_i -{1\over n}(\displaystyle\sum_{i=1}^nx_i)(\displaystyle\sum_{i=1}^ny_i)=87.5

m=SxySxx=87.517.5=5m={S_{xy}\over S_{xx}}={87.5\over 17.5}=5

n=yˉmxˉ=52.55×2.5=40n=\bar{y}-m\cdot\bar{x}=52.5-5\times2.5=40

Therefore, we find that the regression equation is:


y=40+5xy=40+5x




Find out the company’s sales in 1999


y=40+5×6=70(lakhs of rupees)y=40+5\times6=70(lakhs\ of\ rupees)

The company’s sales in 1999 will be 70 lakhs of rupees.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS