Answer to Question #122785 in Math for Felix Coleman

Question #122785
A number of particles with masses m1, m2, m3, · · · , mn are situated at the points with position vectors
r1, r2, r3, · · · , rn relative to an origin O. The center of mass G of the particles is defined to be the
point of space with position vector
R =
m1r1 + m2r2 + m3r3 + · · · + mnrn
m1 + m2 + m3 + · · · + mn
.
Show that if a different origin O0 were used, this definition would still place G at the same point of
space.
(b) An object of mass 40kg is supported in equilibrium by four cables. The forces, in Newtons, exerted
by three of the cables, F1, F2 and F3, are given in terms of the unit vectors, i, j and k as F1 =
80i + 20j + 100k, F2 = 60i − 40j + 80k and F3 = −50i − 100j + 80k. The unit vectors i and j are
perpendicular and horizontal and the unit vector k is vertically upwards.
i. Find F4, the force exerted by the fourth cable, in terms of i, j and k. Also find its magnitude to
the nearest Newton.
ii. Find the angle between F1 and F4.
1
Expert's answer
2020-06-22T17:37:30-0400

(a) Given in the system with origin OO


rG=i=1nmirii=1nmi=m1r1+m2r2+...+mnrnm1+m2+...+mn\overline{r}_G=\dfrac{\displaystyle\sum_{i=1}^nm_i\overline{r}_{i}}{\displaystyle\sum_{i=1}^nm_i}=\dfrac{m_1\overline{r}_1+m_2\overline{r}_2+...+m_n\overline{r}_n}{m_1+m_2+...+m_n}

In new system with origin OO'


rG=i=1nmirii=1nmi=m1r1+m2r2+...+mnrnm1+m2+...+mn\overline{r}_G'=\dfrac{\displaystyle\sum_{i=1}^nm_i\overline{r}_{i}'}{\displaystyle\sum_{i=1}^nm_i}=\dfrac{m_1\overline{r}_1'+m_2\overline{r}_2'+...+m_n\overline{r}_n'}{m_1+m_2+...+m_n}

We have that for new system


rG=rG+OO\overline{r}_G'=\overline{r}_G+\overline{OO'}r1=r1+OO\overline{r}_1'=\overline{r}_1+\overline{OO'}r2=r2+OO\overline{r}_2'=\overline{r}_2+\overline{OO'}......rn=rn+OO\overline{r}_n'=\overline{r}_n+\overline{OO'}

Then


rG=i=1nmirii=1nmi=m1r1+m2r2+...+mnrnm1+m2+...+mn=\overline{r}_G'=\dfrac{\displaystyle\sum_{i=1}^nm_i\overline{r}_{i}'}{\displaystyle\sum_{i=1}^nm_i}=\dfrac{m_1\overline{r}_1'+m_2\overline{r}_2'+...+m_n\overline{r}_n'}{m_1+m_2+...+m_n}=

=m1(r1+OO)+m2(r2+OO)+...+mn(rn+OO)m1+m2+...+mn==\dfrac{m_1(\overline{r}_1+\overline{OO'})+m_2(\overline{r}_2+\overline{OO'})+...+m_n(\overline{r}_n+\overline{OO'})}{m_1+m_2+...+m_n}=

=m1r1+m2r2+...+mnrnm1+m2+...+mn+=\dfrac{m_1\overline{r}_1+m_2\overline{r}_2+...+m_n\overline{r}_n}{m_1+m_2+...+m_n}+

+m1+m2+...+mnm1+m2+...+mnOO=+\dfrac{m_1+m_2+...+m_n}{m_1+m_2+...+m_n}\overline{OO'}=

=m1r1+m2r2+...+mnrnm1+m2+...+mn+OO==\dfrac{m_1\overline{r}_1+m_2\overline{r}_2+...+m_n\overline{r}_n}{m_1+m_2+...+m_n}+\overline{OO'}=

=rG+OO=\overline{r}_G+\overline{OO'}

The center of mass G of the particles is at the same point of space.


(b) Given

F1=80i+20j+100k,\overline{F}_1=80\overline{i}+20\overline{j}+100\overline{k},

F2=60i40j+80k,\overline{F}_2=60\overline{i}-40\overline{j}+80\overline{k},

F3=50i100j+80k.\overline{F}_3=-50\overline{i}-100\overline{j}+80\overline{k}.

The force of gravity is FG=mg=409.8k=392k\overline{F}_G=m\overline{g}=-40\cdot9.8\overline{k}=-392\overline{k}

Let F4=F4xi+F4yj+F4zk.\overline{F}_4=F_{4x}\overline{i}+F_{4y}\overline{j}+F_{4z}\overline{k}.


i.

An object of mass 40kg is supported in equilibrium


F1+F2+F3+F4+FG=0\overline{F}_1+\overline{F}_2+\overline{F}_3+\overline{F}_4+\overline{F}_G=0

Substitute


80i+20j+100k+60i40j+80k+80\overline{i}+20\overline{j}+100\overline{k}+60\overline{i}-40\overline{j}+80\overline{k}+

+(50i100j+80k)+F4xi+F4yj+F4zk++(-50\overline{i}-100\overline{j}+80\overline{k})+F_{4x}\overline{i}+F_{4y}\overline{j}+F_{4z}\overline{k}+

+(392k)=0+(-392\overline{k})=0

80+6050+F4x=0=>F4x=9080+60-50+F_{4x}=0=>F_{4x}=-90

2040100+F4y=0=>F4y=12020-40-100+F_{4y}=0=>F_{4y}=120

100+80+80+F4z392=0=>F4z=132100+80+80+F_{4z}-392=0=>F_{4z}=132


F4=90i+120j+132k.\overline{F}_4=-90\overline{i}+120\overline{j}+132\overline{k}.

F4=(90)2+(120)2+(132)2=39924=|\overline{F}_4|=\sqrt{(-90)^2+(120)^2+(132)^2}=\sqrt{39924}=

=61109200(N)=6\sqrt{1109}\approx200(N)

ii.

F1=80i+20j+100k,\overline{F}_1=80\overline{i}+20\overline{j}+100\overline{k},

F4=90i+120j+132k.\overline{F}_4=-90\overline{i}+120\overline{j}+132\overline{k}.


F1F4=F1F4cosθ\overline{F}_1\cdot\overline{F}_4=|\overline{F}_1||\overline{F}_4|\cos \theta

θ=arccosF1F4F1F4\theta=\arccos{\dfrac{\overline{F}_1\cdot\overline{F}_4}{|\overline{F}_1||\overline{F}_4|}}

F1F4=80(90)+20(120)+100(132)=8400\overline{F}_1\cdot\overline{F}_4=80(-90)+20(120)+100(132)=8400

F1=(80)2+(20)2+(100)2=16800=|\overline{F}_1|=\sqrt{(80)^2+(20)^2+(100)^2}=\sqrt{16800}=

=2042(N)=20\sqrt{42}(N)

θ=arccos84002042(61109)=arccos704657871°\theta=\arccos{\dfrac{8400}{20\sqrt{42}(6\sqrt{1109})}}=\arccos{70\over \sqrt{46578}}\approx71\degree

The angle between F1 and F4 is approximately 71°.71\degree .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment