(a) Given in the system with origin O O O
r ‾ G = ∑ i = 1 n m i r ‾ i ∑ i = 1 n m i = m 1 r ‾ 1 + m 2 r ‾ 2 + . . . + m n r ‾ n m 1 + m 2 + . . . + m n \overline{r}_G=\dfrac{\displaystyle\sum_{i=1}^nm_i\overline{r}_{i}}{\displaystyle\sum_{i=1}^nm_i}=\dfrac{m_1\overline{r}_1+m_2\overline{r}_2+...+m_n\overline{r}_n}{m_1+m_2+...+m_n} r G = i = 1 ∑ n m i i = 1 ∑ n m i r i = m 1 + m 2 + ... + m n m 1 r 1 + m 2 r 2 + ... + m n r n In new system with origin O ′ O' O ′
r ‾ G ′ = ∑ i = 1 n m i r ‾ i ′ ∑ i = 1 n m i = m 1 r ‾ 1 ′ + m 2 r ‾ 2 ′ + . . . + m n r ‾ n ′ m 1 + m 2 + . . . + m n \overline{r}_G'=\dfrac{\displaystyle\sum_{i=1}^nm_i\overline{r}_{i}'}{\displaystyle\sum_{i=1}^nm_i}=\dfrac{m_1\overline{r}_1'+m_2\overline{r}_2'+...+m_n\overline{r}_n'}{m_1+m_2+...+m_n} r G ′ = i = 1 ∑ n m i i = 1 ∑ n m i r i ′ = m 1 + m 2 + ... + m n m 1 r 1 ′ + m 2 r 2 ′ + ... + m n r n ′ We have that for new system
r ‾ G ′ = r ‾ G + O O ′ ‾ \overline{r}_G'=\overline{r}_G+\overline{OO'} r G ′ = r G + O O ′ r ‾ 1 ′ = r ‾ 1 + O O ′ ‾ \overline{r}_1'=\overline{r}_1+\overline{OO'} r 1 ′ = r 1 + O O ′ r ‾ 2 ′ = r ‾ 2 + O O ′ ‾ \overline{r}_2'=\overline{r}_2+\overline{OO'} r 2 ′ = r 2 + O O ′ . . . ... ... r ‾ n ′ = r ‾ n + O O ′ ‾ \overline{r}_n'=\overline{r}_n+\overline{OO'} r n ′ = r n + O O ′ Then
r ‾ G ′ = ∑ i = 1 n m i r ‾ i ′ ∑ i = 1 n m i = m 1 r ‾ 1 ′ + m 2 r ‾ 2 ′ + . . . + m n r ‾ n ′ m 1 + m 2 + . . . + m n = \overline{r}_G'=\dfrac{\displaystyle\sum_{i=1}^nm_i\overline{r}_{i}'}{\displaystyle\sum_{i=1}^nm_i}=\dfrac{m_1\overline{r}_1'+m_2\overline{r}_2'+...+m_n\overline{r}_n'}{m_1+m_2+...+m_n}= r G ′ = i = 1 ∑ n m i i = 1 ∑ n m i r i ′ = m 1 + m 2 + ... + m n m 1 r 1 ′ + m 2 r 2 ′ + ... + m n r n ′ =
= m 1 ( r ‾ 1 + O O ′ ‾ ) + m 2 ( r ‾ 2 + O O ′ ‾ ) + . . . + m n ( r ‾ n + O O ′ ‾ ) m 1 + m 2 + . . . + m n = =\dfrac{m_1(\overline{r}_1+\overline{OO'})+m_2(\overline{r}_2+\overline{OO'})+...+m_n(\overline{r}_n+\overline{OO'})}{m_1+m_2+...+m_n}= = m 1 + m 2 + ... + m n m 1 ( r 1 + O O ′ ) + m 2 ( r 2 + O O ′ ) + ... + m n ( r n + O O ′ ) =
= m 1 r ‾ 1 + m 2 r ‾ 2 + . . . + m n r ‾ n m 1 + m 2 + . . . + m n + =\dfrac{m_1\overline{r}_1+m_2\overline{r}_2+...+m_n\overline{r}_n}{m_1+m_2+...+m_n}+ = m 1 + m 2 + ... + m n m 1 r 1 + m 2 r 2 + ... + m n r n +
+ m 1 + m 2 + . . . + m n m 1 + m 2 + . . . + m n O O ′ ‾ = +\dfrac{m_1+m_2+...+m_n}{m_1+m_2+...+m_n}\overline{OO'}= + m 1 + m 2 + ... + m n m 1 + m 2 + ... + m n O O ′ =
= m 1 r ‾ 1 + m 2 r ‾ 2 + . . . + m n r ‾ n m 1 + m 2 + . . . + m n + O O ′ ‾ = =\dfrac{m_1\overline{r}_1+m_2\overline{r}_2+...+m_n\overline{r}_n}{m_1+m_2+...+m_n}+\overline{OO'}= = m 1 + m 2 + ... + m n m 1 r 1 + m 2 r 2 + ... + m n r n + O O ′ =
= r ‾ G + O O ′ ‾ =\overline{r}_G+\overline{OO'} = r G + O O ′ The center of mass G of the particles is at the same point of space.
(b) Given
F ‾ 1 = 80 i ‾ + 20 j ‾ + 100 k ‾ , \overline{F}_1=80\overline{i}+20\overline{j}+100\overline{k}, F 1 = 80 i + 20 j + 100 k ,
F ‾ 2 = 60 i ‾ − 40 j ‾ + 80 k ‾ , \overline{F}_2=60\overline{i}-40\overline{j}+80\overline{k}, F 2 = 60 i − 40 j + 80 k ,
F ‾ 3 = − 50 i ‾ − 100 j ‾ + 80 k ‾ . \overline{F}_3=-50\overline{i}-100\overline{j}+80\overline{k}. F 3 = − 50 i − 100 j + 80 k .
The force of gravity is F ‾ G = m g ‾ = − 40 ⋅ 9.8 k ‾ = − 392 k ‾ \overline{F}_G=m\overline{g}=-40\cdot9.8\overline{k}=-392\overline{k} F G = m g = − 40 ⋅ 9.8 k = − 392 k
Let F ‾ 4 = F 4 x i ‾ + F 4 y j ‾ + F 4 z k ‾ . \overline{F}_4=F_{4x}\overline{i}+F_{4y}\overline{j}+F_{4z}\overline{k}. F 4 = F 4 x i + F 4 y j + F 4 z k .
i.
An object of mass 40kg is supported in equilibrium
F ‾ 1 + F ‾ 2 + F ‾ 3 + F ‾ 4 + F ‾ G = 0 \overline{F}_1+\overline{F}_2+\overline{F}_3+\overline{F}_4+\overline{F}_G=0 F 1 + F 2 + F 3 + F 4 + F G = 0 Substitute
80 i ‾ + 20 j ‾ + 100 k ‾ + 60 i ‾ − 40 j ‾ + 80 k ‾ + 80\overline{i}+20\overline{j}+100\overline{k}+60\overline{i}-40\overline{j}+80\overline{k}+ 80 i + 20 j + 100 k + 60 i − 40 j + 80 k +
+ ( − 50 i ‾ − 100 j ‾ + 80 k ‾ ) + F 4 x i ‾ + F 4 y j ‾ + F 4 z k ‾ + +(-50\overline{i}-100\overline{j}+80\overline{k})+F_{4x}\overline{i}+F_{4y}\overline{j}+F_{4z}\overline{k}+ + ( − 50 i − 100 j + 80 k ) + F 4 x i + F 4 y j + F 4 z k +
+ ( − 392 k ‾ ) = 0 +(-392\overline{k})=0 + ( − 392 k ) = 0
80 + 60 − 50 + F 4 x = 0 = > F 4 x = − 90 80+60-50+F_{4x}=0=>F_{4x}=-90 80 + 60 − 50 + F 4 x = 0 => F 4 x = − 90
20 − 40 − 100 + F 4 y = 0 = > F 4 y = 120 20-40-100+F_{4y}=0=>F_{4y}=120 20 − 40 − 100 + F 4 y = 0 => F 4 y = 120
100 + 80 + 80 + F 4 z − 392 = 0 = > F 4 z = 132 100+80+80+F_{4z}-392=0=>F_{4z}=132 100 + 80 + 80 + F 4 z − 392 = 0 => F 4 z = 132
F ‾ 4 = − 90 i ‾ + 120 j ‾ + 132 k ‾ . \overline{F}_4=-90\overline{i}+120\overline{j}+132\overline{k}. F 4 = − 90 i + 120 j + 132 k .
∣ F ‾ 4 ∣ = ( − 90 ) 2 + ( 120 ) 2 + ( 132 ) 2 = 39924 = |\overline{F}_4|=\sqrt{(-90)^2+(120)^2+(132)^2}=\sqrt{39924}= ∣ F 4 ∣ = ( − 90 ) 2 + ( 120 ) 2 + ( 132 ) 2 = 39924 =
= 6 1109 ≈ 200 ( N ) =6\sqrt{1109}\approx200(N) = 6 1109 ≈ 200 ( N ) ii.
F ‾ 1 = 80 i ‾ + 20 j ‾ + 100 k ‾ , \overline{F}_1=80\overline{i}+20\overline{j}+100\overline{k}, F 1 = 80 i + 20 j + 100 k ,
F ‾ 4 = − 90 i ‾ + 120 j ‾ + 132 k ‾ . \overline{F}_4=-90\overline{i}+120\overline{j}+132\overline{k}. F 4 = − 90 i + 120 j + 132 k .
F ‾ 1 ⋅ F ‾ 4 = ∣ F ‾ 1 ∣ ∣ F ‾ 4 ∣ cos θ \overline{F}_1\cdot\overline{F}_4=|\overline{F}_1||\overline{F}_4|\cos \theta F 1 ⋅ F 4 = ∣ F 1 ∣∣ F 4 ∣ cos θ
θ = arccos F ‾ 1 ⋅ F ‾ 4 ∣ F ‾ 1 ∣ ∣ F ‾ 4 ∣ \theta=\arccos{\dfrac{\overline{F}_1\cdot\overline{F}_4}{|\overline{F}_1||\overline{F}_4|}} θ = arccos ∣ F 1 ∣∣ F 4 ∣ F 1 ⋅ F 4
F ‾ 1 ⋅ F ‾ 4 = 80 ( − 90 ) + 20 ( 120 ) + 100 ( 132 ) = 8400 \overline{F}_1\cdot\overline{F}_4=80(-90)+20(120)+100(132)=8400 F 1 ⋅ F 4 = 80 ( − 90 ) + 20 ( 120 ) + 100 ( 132 ) = 8400
∣ F ‾ 1 ∣ = ( 80 ) 2 + ( 20 ) 2 + ( 100 ) 2 = 16800 = |\overline{F}_1|=\sqrt{(80)^2+(20)^2+(100)^2}=\sqrt{16800}= ∣ F 1 ∣ = ( 80 ) 2 + ( 20 ) 2 + ( 100 ) 2 = 16800 =
= 20 42 ( N ) =20\sqrt{42}(N) = 20 42 ( N )
θ = arccos 8400 20 42 ( 6 1109 ) = arccos 70 46578 ≈ 71 ° \theta=\arccos{\dfrac{8400}{20\sqrt{42}(6\sqrt{1109})}}=\arccos{70\over \sqrt{46578}}\approx71\degree θ = arccos 20 42 ( 6 1109 ) 8400 = arccos 46578 70 ≈ 71°
The angle between F1 and F4 is approximately 71 ° . 71\degree . 71°.
Comments
Leave a comment