Given "x(0)=0, v(0)=u, a(t)=a=const."
"v(t)={dx\\over dt}=>x(t)=\\int vdt=\\int(u+at)dt="
"=0+ut+{at^2\\over 2}=ut+{at^2\\over 2}"
"v=u+at=>t={v-u\\over a}"
Then
"={2uv-2u^2+v^2-2vu+u^2\\over 2a}={v^2-u^2\\over 2a}"
"v^2=u^2+2ax"
(b)
"v(t)=r'(t)=-b\\Omega \\sin(\\Omega t)i+b\\Omega \\cos(\\Omega t)j+ck"
"|v(t)|=\\sqrt{(-b\\Omega \\sin(\\Omega t))^2+(b\\Omega \\cos(\\Omega t))^2+(c)^2}="
"=\\sqrt{b^2\\Omega^2+c^2}=const"
"a(t)=r''(t)=v'(t)=-b\\Omega^2 \\cos(\\Omega t)i-b\\Omega^2 \\sin(\\Omega t)j+0k"
"|a(t)|=\\sqrt{(-b\\Omega^2 \\cos(\\Omega t))^2+(b\\Omega^2 \\sin(\\Omega t))^2}=b\\Omega^2"
Comments
Leave a comment