Question #122782
(a) A particle P moves along the x-axis with constant acceleration a in the positive x-direction. Initially
P is at the origin and is moving with velocity u in the positive x-direction. Show that the velocity v
and displacement x of P at time t are given by
v = u + at, x = ut +
1
2
at2
,
and deduce that
v
2 = u
2 + 2ax.
(b) The trajectory of a charged particle moving in a magnetic field is given by
r = b cos (Ωt)i + b sin (Ωt)j + ctk,
where b, Ω and c are positive constants. Show that the particle moves with constant speed and find the
magnitude of its acceleration.
1
Expert's answer
2020-06-17T19:32:54-0400

Given x(0)=0,v(0)=u,a(t)=a=const.x(0)=0, v(0)=u, a(t)=a=const.


a(t)=dvdt=>v(t)=adt=u+ata(t)={dv\over dt}=>v(t)=\int adt=u+at

v(t)=dxdt=>x(t)=vdt=(u+at)dt=v(t)={dx\over dt}=>x(t)=\int vdt=\int(u+at)dt=

=0+ut+at22=ut+at22=0+ut+{at^2\over 2}=ut+{at^2\over 2}

v=u+at=>t=vuav=u+at=>t={v-u\over a}

Then


x=ut+at22=u(vua)+a2(vua)2=x=ut+{at^2\over 2}=u({v-u\over a})+{a\over 2}({v-u\over a})^2=

=2uv2u2+v22vu+u22a=v2u22a={2uv-2u^2+v^2-2vu+u^2\over 2a}={v^2-u^2\over 2a}

v2=u2+2axv^2=u^2+2ax

(b)


r(t)=bcos(Ωt)i+bsin(Ωt)j+ctkr(t)=b\cos(\Omega t) i+b\sin(\Omega t)j+ctk

v(t)=r(t)=bΩsin(Ωt)i+bΩcos(Ωt)j+ckv(t)=r'(t)=-b\Omega \sin(\Omega t)i+b\Omega \cos(\Omega t)j+ck

v(t)=(bΩsin(Ωt))2+(bΩcos(Ωt))2+(c)2=|v(t)|=\sqrt{(-b\Omega \sin(\Omega t))^2+(b\Omega \cos(\Omega t))^2+(c)^2}=

=b2Ω2+c2=const=\sqrt{b^2\Omega^2+c^2}=const

a(t)=r(t)=v(t)=bΩ2cos(Ωt)ibΩ2sin(Ωt)j+0ka(t)=r''(t)=v'(t)=-b\Omega^2 \cos(\Omega t)i-b\Omega^2 \sin(\Omega t)j+0k

a(t)=(bΩ2cos(Ωt))2+(bΩ2sin(Ωt))2=bΩ2|a(t)|=\sqrt{(-b\Omega^2 \cos(\Omega t))^2+(b\Omega^2 \sin(\Omega t))^2}=b\Omega^2



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS