Question #122780
1. If a1 = λ1i + µ1j + ν1k, a2 = λ2i + µ2j + ν2k, a3 = λ3i + µ3j + ν3k, where {i,j, k} is a standard basis, show
that
(a)
a1 · (a2 × a3) =






λ1 µ1 ν1
λ2 µ2 ν2
λ3 µ3 ν3






.
(b) Deduce that a2 · (a3 × a1), due to cyclic rotation of the vectors in a triple scalar product leaves the
value of the product unchanged.
(c) If r(t) = (3t
2 − 4)i + t
3
j + (t + 3)k, where {i,j, k} is a constant standard basis, find r˙ and ¨r. Deduce
the time derivative of r × r˙.
1
Expert's answer
2020-06-17T19:39:42-0400
a1a2×a3=λ1μ1ν1λ2μ2ν2λ3μ3ν3a_1\cdot a_2\times a_3=\begin{vmatrix} \lambda_1& \mu_1 & \nu_1 \\ \lambda_2& \mu_2 & \nu_2 \\ \lambda_3& \mu_3 & \nu_3 \end{vmatrix}


a2×a3=ijkλ2μ2ν2λ3μ3ν3=a_2\times a_3=\begin{vmatrix} i& j & k \\ \lambda_2& \mu_2 & \nu_2 \\ \lambda_3& \mu_3 & \nu_3 \end{vmatrix}=

=iμ2ν2μ3ν3jλ2ν2λ3ν3+kλ2μ2λ3μ3=i\begin{vmatrix} \mu_2 & \nu_2 \\ \mu_3 & \nu_3 \end{vmatrix}-j\begin{vmatrix} \lambda_2 & \nu_2 \\ \lambda_3 & \nu_3 \end{vmatrix}+k\begin{vmatrix} \lambda_2 & \mu_2 \\ \lambda_3 & \mu_3 \end{vmatrix}


a1a2×a3=λ1μ2ν2μ3ν3μ1λ2ν2λ3ν3+ν1λ2μ2λ3μ3=a_1\cdot a_2\times a_3=\lambda_1\begin{vmatrix} \mu_2 & \nu_2 \\ \mu_3 & \nu_3 \end{vmatrix}-\mu_1\begin{vmatrix} \lambda_2 & \nu_2 \\ \lambda_3 & \nu_3 \end{vmatrix}+\nu_1\begin{vmatrix} \lambda_2 & \mu_2 \\ \lambda_3 & \mu_3 \end{vmatrix}=

=λ1μ1ν1λ2μ2ν2λ3μ3ν3=\begin{vmatrix} \lambda_1& \mu_1 & \nu_1 \\ \lambda_2& \mu_2 & \nu_2 \\ \lambda_3& \mu_3 & \nu_3 \end{vmatrix}

(b)

Switching Property:

The interchange of any two rows (or columns) of the determinant changes its sign.


a2a3×a1=λ2μ2ν2λ3μ3ν3λ1μ1ν1=a_2\cdot a_3\times a_1=\begin{vmatrix} \lambda_2& \mu_2 & \nu_2 \\ \lambda_3& \mu_3 & \nu_3 \\ \lambda_1& \mu_1 & \nu_1 \end{vmatrix}=

=λ2μ2ν2λ1μ1ν1λ3μ3ν3=λ1μ1ν1λ2μ2ν2λ3μ3ν3==-\begin{vmatrix} \lambda_2& \mu_2 & \nu_2 \\ \lambda_1& \mu_1 & \nu_1 \\ \lambda_3& \mu_3 & \nu_3 \end{vmatrix}=\begin{vmatrix} \lambda_1& \mu_1 & \nu_1 \\ \lambda_2& \mu_2 & \nu_2 \\ \lambda_3& \mu_3 & \nu_3 \end{vmatrix}=


=a1a2×a3=a_1\cdot a_2\times a_3

(c)


r(t)=(3t24)i+t3j+(t+3)kr(t)=(3t^2-4)i+t^3j+(t+3)k

r(t)=6ti+3t2j+kr'(t)=6ti+3t^2j+k

r(t)=6i+6tj+0kr''(t)=6i+6tj+0k

r×r=ijk3t24t3t+26t3t21=r\times r'=\begin{vmatrix} i& j & k \\ 3t^2-4& t^3 & t+2 \\ 6t& 3t^2 & 1 \end{vmatrix}=

=it3t+23t21j3t24t+26t1+k3t24t36t3t2==i\begin{vmatrix} t^3 & t+2\\ 3t^2 & 1 \end{vmatrix}-j\begin{vmatrix} 3t^2-4 & t+2 \\ 6t & 1 \end{vmatrix}+k\begin{vmatrix} 3t^2-4 & t^3\\ 6t & 3t^2 \end{vmatrix}=

=(t33t36t2)i(3t246t212t)j+=(t^3-3t^3-6t^2)i-(3t^2-4-6t^2-12t)j+

+(9t412t26t4)k=+(9t^4-12t^2-6t^4)k=

=(2t36t2)+(3t2+12t+4)j+(3t412t2)k=(-2t^3-6t^2)+(3t^2+12t+4)j+(3t^4-12t^2)k


(r×r)=(6t212t)i+(6t+12)j+(12t324t)k(r\times r')'=(-6t^2-12t)i+(6t+12)j+(12t^3-24t)k



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS