2020-06-17T03:10:58-04:00
1. If a1 = λ1i + µ1j + ν1k, a2 = λ2i + µ2j + ν2k, a3 = λ3i + µ3j + ν3k, where {i,j, k} is a standard basis, show
that
(a)
a1 · (a2 × a3) =
λ1 µ1 ν1
λ2 µ2 ν2
λ3 µ3 ν3
.
(b) Deduce that a2 · (a3 × a1), due to cyclic rotation of the vectors in a triple scalar product leaves the
value of the product unchanged.
(c) If r(t) = (3t
2 − 4)i + t
3
j + (t + 3)k, where {i,j, k} is a constant standard basis, find r˙ and ¨r. Deduce
the time derivative of r × r˙.
1
2020-06-17T19:39:42-0400
a 1 ⋅ a 2 × a 3 = ∣ λ 1 μ 1 ν 1 λ 2 μ 2 ν 2 λ 3 μ 3 ν 3 ∣ a_1\cdot a_2\times a_3=\begin{vmatrix}
\lambda_1& \mu_1 & \nu_1 \\
\lambda_2& \mu_2 & \nu_2 \\
\lambda_3& \mu_3 & \nu_3
\end{vmatrix} a 1 ⋅ a 2 × a 3 = ∣ ∣ λ 1 λ 2 λ 3 μ 1 μ 2 μ 3 ν 1 ν 2 ν 3 ∣ ∣
a 2 × a 3 = ∣ i j k λ 2 μ 2 ν 2 λ 3 μ 3 ν 3 ∣ = a_2\times a_3=\begin{vmatrix}
i& j & k \\
\lambda_2& \mu_2 & \nu_2 \\
\lambda_3& \mu_3 & \nu_3
\end{vmatrix}= a 2 × a 3 = ∣ ∣ i λ 2 λ 3 j μ 2 μ 3 k ν 2 ν 3 ∣ ∣ =
= i ∣ μ 2 ν 2 μ 3 ν 3 ∣ − j ∣ λ 2 ν 2 λ 3 ν 3 ∣ + k ∣ λ 2 μ 2 λ 3 μ 3 ∣ =i\begin{vmatrix}
\mu_2 & \nu_2 \\
\mu_3 & \nu_3
\end{vmatrix}-j\begin{vmatrix}
\lambda_2 & \nu_2 \\
\lambda_3 & \nu_3
\end{vmatrix}+k\begin{vmatrix}
\lambda_2 & \mu_2 \\
\lambda_3 & \mu_3
\end{vmatrix} = i ∣ ∣ μ 2 μ 3 ν 2 ν 3 ∣ ∣ − j ∣ ∣ λ 2 λ 3 ν 2 ν 3 ∣ ∣ + k ∣ ∣ λ 2 λ 3 μ 2 μ 3 ∣ ∣
a 1 ⋅ a 2 × a 3 = λ 1 ∣ μ 2 ν 2 μ 3 ν 3 ∣ − μ 1 ∣ λ 2 ν 2 λ 3 ν 3 ∣ + ν 1 ∣ λ 2 μ 2 λ 3 μ 3 ∣ = a_1\cdot a_2\times a_3=\lambda_1\begin{vmatrix}
\mu_2 & \nu_2 \\
\mu_3 & \nu_3
\end{vmatrix}-\mu_1\begin{vmatrix}
\lambda_2 & \nu_2 \\
\lambda_3 & \nu_3
\end{vmatrix}+\nu_1\begin{vmatrix}
\lambda_2 & \mu_2 \\
\lambda_3 & \mu_3
\end{vmatrix}= a 1 ⋅ a 2 × a 3 = λ 1 ∣ ∣ μ 2 μ 3 ν 2 ν 3 ∣ ∣ − μ 1 ∣ ∣ λ 2 λ 3 ν 2 ν 3 ∣ ∣ + ν 1 ∣ ∣ λ 2 λ 3 μ 2 μ 3 ∣ ∣ =
= ∣ λ 1 μ 1 ν 1 λ 2 μ 2 ν 2 λ 3 μ 3 ν 3 ∣ =\begin{vmatrix}
\lambda_1& \mu_1 & \nu_1 \\
\lambda_2& \mu_2 & \nu_2 \\
\lambda_3& \mu_3 & \nu_3
\end{vmatrix} = ∣ ∣ λ 1 λ 2 λ 3 μ 1 μ 2 μ 3 ν 1 ν 2 ν 3 ∣ ∣ (b)
Switching Property:
The interchange of any two rows (or columns) of the determinant changes its sign.
a 2 ⋅ a 3 × a 1 = ∣ λ 2 μ 2 ν 2 λ 3 μ 3 ν 3 λ 1 μ 1 ν 1 ∣ = a_2\cdot a_3\times a_1=\begin{vmatrix}
\lambda_2& \mu_2 & \nu_2 \\
\lambda_3& \mu_3 & \nu_3 \\
\lambda_1& \mu_1 & \nu_1
\end{vmatrix}= a 2 ⋅ a 3 × a 1 = ∣ ∣ λ 2 λ 3 λ 1 μ 2 μ 3 μ 1 ν 2 ν 3 ν 1 ∣ ∣ =
= − ∣ λ 2 μ 2 ν 2 λ 1 μ 1 ν 1 λ 3 μ 3 ν 3 ∣ = ∣ λ 1 μ 1 ν 1 λ 2 μ 2 ν 2 λ 3 μ 3 ν 3 ∣ = =-\begin{vmatrix}
\lambda_2& \mu_2 & \nu_2 \\
\lambda_1& \mu_1 & \nu_1 \\
\lambda_3& \mu_3 & \nu_3
\end{vmatrix}=\begin{vmatrix}
\lambda_1& \mu_1 & \nu_1 \\
\lambda_2& \mu_2 & \nu_2 \\
\lambda_3& \mu_3 & \nu_3
\end{vmatrix}= = − ∣ ∣ λ 2 λ 1 λ 3 μ 2 μ 1 μ 3 ν 2 ν 1 ν 3 ∣ ∣ = ∣ ∣ λ 1 λ 2 λ 3 μ 1 μ 2 μ 3 ν 1 ν 2 ν 3 ∣ ∣ =
= a 1 ⋅ a 2 × a 3 =a_1\cdot a_2\times a_3 = a 1 ⋅ a 2 × a 3 (c)
r ( t ) = ( 3 t 2 − 4 ) i + t 3 j + ( t + 3 ) k r(t)=(3t^2-4)i+t^3j+(t+3)k r ( t ) = ( 3 t 2 − 4 ) i + t 3 j + ( t + 3 ) k
r ′ ( t ) = 6 t i + 3 t 2 j + k r'(t)=6ti+3t^2j+k r ′ ( t ) = 6 t i + 3 t 2 j + k
r ′ ′ ( t ) = 6 i + 6 t j + 0 k r''(t)=6i+6tj+0k r ′′ ( t ) = 6 i + 6 t j + 0 k
r × r ′ = ∣ i j k 3 t 2 − 4 t 3 t + 2 6 t 3 t 2 1 ∣ = r\times r'=\begin{vmatrix}
i& j & k \\
3t^2-4& t^3 & t+2 \\
6t& 3t^2 & 1
\end{vmatrix}= r × r ′ = ∣ ∣ i 3 t 2 − 4 6 t j t 3 3 t 2 k t + 2 1 ∣ ∣ =
= i ∣ t 3 t + 2 3 t 2 1 ∣ − j ∣ 3 t 2 − 4 t + 2 6 t 1 ∣ + k ∣ 3 t 2 − 4 t 3 6 t 3 t 2 ∣ = =i\begin{vmatrix}
t^3 & t+2\\
3t^2 & 1
\end{vmatrix}-j\begin{vmatrix}
3t^2-4 & t+2 \\
6t & 1
\end{vmatrix}+k\begin{vmatrix}
3t^2-4 & t^3\\
6t & 3t^2
\end{vmatrix}= = i ∣ ∣ t 3 3 t 2 t + 2 1 ∣ ∣ − j ∣ ∣ 3 t 2 − 4 6 t t + 2 1 ∣ ∣ + k ∣ ∣ 3 t 2 − 4 6 t t 3 3 t 2 ∣ ∣ =
= ( t 3 − 3 t 3 − 6 t 2 ) i − ( 3 t 2 − 4 − 6 t 2 − 12 t ) j + =(t^3-3t^3-6t^2)i-(3t^2-4-6t^2-12t)j+ = ( t 3 − 3 t 3 − 6 t 2 ) i − ( 3 t 2 − 4 − 6 t 2 − 12 t ) j +
+ ( 9 t 4 − 12 t 2 − 6 t 4 ) k = +(9t^4-12t^2-6t^4)k= + ( 9 t 4 − 12 t 2 − 6 t 4 ) k =
= ( − 2 t 3 − 6 t 2 ) + ( 3 t 2 + 12 t + 4 ) j + ( 3 t 4 − 12 t 2 ) k =(-2t^3-6t^2)+(3t^2+12t+4)j+(3t^4-12t^2)k = ( − 2 t 3 − 6 t 2 ) + ( 3 t 2 + 12 t + 4 ) j + ( 3 t 4 − 12 t 2 ) k
( r × r ′ ) ′ = ( − 6 t 2 − 12 t ) i + ( 6 t + 12 ) j + ( 12 t 3 − 24 t ) k (r\times r')'=(-6t^2-12t)i+(6t+12)j+(12t^3-24t)k ( r × r ′ ) ′ = ( − 6 t 2 − 12 t ) i + ( 6 t + 12 ) j + ( 12 t 3 − 24 t ) k
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Learn more about our help with Assignments:
Math
Comments