Answer to Question #122783 in Math for Felix Coleman
2020-06-17T03:11:07-04:00
The position vector r of a particle at time t is
r = a cos (ωt)i + b sin (ωt)j
where a, b, ∈ R and a 6= b.
(a) Find the velocity and acceleration vectors v and a respectively.
(b) Show that
ω
2
|v|
2 + |a|
2 = ω
4
(a
2 + b
2
),
and find the times at which the velocity and the acceleration vectors are perpendicular.
1
2020-06-17T19:34:26-0400
(a)
r ˉ = a cos ( ω t ) i ˉ + b sin ( ω t ) j ˉ \bar{r}=a\cos(\omega t)\bar{i}+b\sin(\omega t)\bar{j} r ˉ = a cos ( ω t ) i ˉ + b sin ( ω t ) j ˉ
v ˉ = r ′ ˉ = − a ω sin ( ω t ) i ˉ + b w cos ( ω t ) j ˉ \bar{v}=\bar{r'}=-a\omega\sin(\omega t)\bar{i}+bw\cos(\omega t)\bar{j} v ˉ = r ′ ˉ = − aω sin ( ω t ) i ˉ + b w cos ( ω t ) j ˉ
a ˉ = r ′ ′ ˉ = − a ω 2 cos ( ω t ) i ˉ − b w 2 sin ( ω t ) j ˉ \bar{a}=\bar{r''}=-a\omega^2\cos(\omega t)\bar{i}-bw^2\sin(\omega t)\bar{j} a ˉ = r ′′ ˉ = − a ω 2 cos ( ω t ) i ˉ − b w 2 sin ( ω t ) j ˉ
a ˉ = − ω 2 r ˉ \bar{a}=-\omega ^2\bar{r} a ˉ = − ω 2 r ˉ (b)
∣ v ˉ ∣ = ( − a ω sin ( ω t ) ) 2 + ( b ω cos ( ω t ) ) 2 = |\bar{v}|=\sqrt{(-a\omega\sin(\omega t))^2+(b\omega\cos(\omega t))^2}= ∣ v ˉ ∣ = ( − aω sin ( ω t ) ) 2 + ( bω cos ( ω t ) ) 2 = = ω a 2 + b 2 =\omega\sqrt{a^2+b^2} = ω a 2 + b 2
∣ a ˉ ∣ = ( − a ω 2 cos ( ω t ) ) 2 + ( b ω 2 sin ( ω t ) ) 2 = |\bar{a}|=\sqrt{(-a\omega^2\cos(\omega t))^2+(b\omega^2\sin(\omega t))^2}= ∣ a ˉ ∣ = ( − a ω 2 cos ( ω t ) ) 2 + ( b ω 2 sin ( ω t ) ) 2 = = ω 2 a 2 + b 2 =\omega^2\sqrt{a^2+b^2} = ω 2 a 2 + b 2
∣ v ˉ ∣ 2 ω 2 = ω 4 ( a 2 + b 2 ) |\bar{v}|^2\omega^2=\omega^4(a^2+b^2) ∣ v ˉ ∣ 2 ω 2 = ω 4 ( a 2 + b 2 )
v ˉ ⊥ a ˉ = > v ˉ ⋅ a ˉ = 0 \bar{v}\perp\bar{a}=>\bar{v}\cdot \bar{a}=0 v ˉ ⊥ a ˉ => v ˉ ⋅ a ˉ = 0
− a ω sin ( ω t ) ( − a ω 2 cos ( ω t ) ) + b w cos ( ω t ) ( − b w 2 sin ( ω t ) ) = -a\omega\sin(\omega t)(-a\omega^2\cos(\omega t))+bw\cos(\omega t)(-bw^2\sin(\omega t))= − aω sin ( ω t ) ( − a ω 2 cos ( ω t )) + b w cos ( ω t ) ( − b w 2 sin ( ω t )) =
= 1 2 ω 3 ( a 2 + b 2 ) sin 2 ω t = 0 ={1\over 2}\omega^3(a^2+b^2)\sin2\omega t=0 = 2 1 ω 3 ( a 2 + b 2 ) sin 2 ω t = 0
2 ω t = π n , n = 0 , 1 , 2 , . . . 2\omega t=\pi n, n=0,1,2,... 2 ω t = πn , n = 0 , 1 , 2 , ...
t = π n 2 ω , n = 0 , 1 , 2 , . . . t={\pi n\over 2\omega}, n=0, 1,2,... t = 2 ω πn , n = 0 , 1 , 2 , ...
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Learn more about our help with Assignments:
Math
Comments
Leave a comment