Answer to Question #122783 in Math for Felix Coleman

Question #122783
The position vector r of a particle at time t is
r = a cos (ωt)i + b sin (ωt)j
where a, b, ∈ R and a 6= b.
(a) Find the velocity and acceleration vectors v and a respectively.
(b) Show that
ω
2
|v|
2 + |a|
2 = ω
4
(a
2 + b
2
),
and find the times at which the velocity and the acceleration vectors are perpendicular.
1
Expert's answer
2020-06-17T19:34:26-0400

(a)

rˉ=acos(ωt)iˉ+bsin(ωt)jˉ\bar{r}=a\cos(\omega t)\bar{i}+b\sin(\omega t)\bar{j}

vˉ=rˉ=aωsin(ωt)iˉ+bwcos(ωt)jˉ\bar{v}=\bar{r'}=-a\omega\sin(\omega t)\bar{i}+bw\cos(\omega t)\bar{j}

aˉ=rˉ=aω2cos(ωt)iˉbw2sin(ωt)jˉ\bar{a}=\bar{r''}=-a\omega^2\cos(\omega t)\bar{i}-bw^2\sin(\omega t)\bar{j}

aˉ=ω2rˉ\bar{a}=-\omega ^2\bar{r}

(b)


vˉ=(aωsin(ωt))2+(bωcos(ωt))2=|\bar{v}|=\sqrt{(-a\omega\sin(\omega t))^2+(b\omega\cos(\omega t))^2}==ωa2+b2=\omega\sqrt{a^2+b^2}

aˉ=(aω2cos(ωt))2+(bω2sin(ωt))2=|\bar{a}|=\sqrt{(-a\omega^2\cos(\omega t))^2+(b\omega^2\sin(\omega t))^2}==ω2a2+b2=\omega^2\sqrt{a^2+b^2}

vˉ2ω2=ω4(a2+b2)|\bar{v}|^2\omega^2=\omega^4(a^2+b^2)

vˉaˉ=>vˉaˉ=0\bar{v}\perp\bar{a}=>\bar{v}\cdot \bar{a}=0

aωsin(ωt)(aω2cos(ωt))+bwcos(ωt)(bw2sin(ωt))=-a\omega\sin(\omega t)(-a\omega^2\cos(\omega t))+bw\cos(\omega t)(-bw^2\sin(\omega t))=

=12ω3(a2+b2)sin2ωt=0={1\over 2}\omega^3(a^2+b^2)\sin2\omega t=0

2ωt=πn,n=0,1,2,...2\omega t=\pi n, n=0,1,2,...

t=πn2ω,n=0,1,2,...t={\pi n\over 2\omega}, n=0, 1,2,...



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment