Answer to Question #122783 in Math for Felix Coleman

Question #122783
The position vector r of a particle at time t is
r = a cos (ωt)i + b sin (ωt)j
where a, b, ∈ R and a 6= b.
(a) Find the velocity and acceleration vectors v and a respectively.
(b) Show that
ω
2
|v|
2 + |a|
2 = ω
4
(a
2 + b
2
),
and find the times at which the velocity and the acceleration vectors are perpendicular.
1
Expert's answer
2020-06-17T19:34:26-0400

(a)

"\\bar{r}=a\\cos(\\omega t)\\bar{i}+b\\sin(\\omega t)\\bar{j}"

"\\bar{v}=\\bar{r'}=-a\\omega\\sin(\\omega t)\\bar{i}+bw\\cos(\\omega t)\\bar{j}"

"\\bar{a}=\\bar{r''}=-a\\omega^2\\cos(\\omega t)\\bar{i}-bw^2\\sin(\\omega t)\\bar{j}"

"\\bar{a}=-\\omega ^2\\bar{r}"

(b)


"|\\bar{v}|=\\sqrt{(-a\\omega\\sin(\\omega t))^2+(b\\omega\\cos(\\omega t))^2}=""=\\omega\\sqrt{a^2+b^2}"

"|\\bar{a}|=\\sqrt{(-a\\omega^2\\cos(\\omega t))^2+(b\\omega^2\\sin(\\omega t))^2}=""=\\omega^2\\sqrt{a^2+b^2}"

"|\\bar{v}|^2\\omega^2=\\omega^4(a^2+b^2)"

"\\bar{v}\\perp\\bar{a}=>\\bar{v}\\cdot \\bar{a}=0"

"-a\\omega\\sin(\\omega t)(-a\\omega^2\\cos(\\omega t))+bw\\cos(\\omega t)(-bw^2\\sin(\\omega t))="

"={1\\over 2}\\omega^3(a^2+b^2)\\sin2\\omega t=0"

"2\\omega t=\\pi n, n=0,1,2,..."

"t={\\pi n\\over 2\\omega}, n=0, 1,2,..."



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog