Linear Algebra Answers

Questions: 2 049

Answers by our Experts: 1 848

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Search & Filtering

Find a basis and the dimension of the subspace w of V spanned by the matrices

A=[ 1 2
-1 3]
B=[ 2 5
1 -1]
C=[3 4
-2 5]
Determine whether or not the following vectors span R^3

u1 = ( 1, 1, 2), u2 = ( 1, -1, 2 ) and u3 = ( 1, 0, 1 ).
Determine the polynomial function whose graph passes through the points (2, 4), (3,6) and (5,10). Also sketch the graph of the polynomial function. (Using Cramer’s Method).
Let T: R^2 to R^3 be defined by (a, b)=(a+b, a-2b, 3a+b). Show that T is nonsingular. Hence find T inverse.
Find a linear mapping T: R^3 tends to R^3, whose image is spanned by (1, 2, 3),
(4, 5, 6)
Show that
Rank(ST)=Rank s ,if T is non singular
Where S,T : V->V are linear transformation of a finite dimensional vector space.

Given the homogeneous system of linear equations:

x1 + 2x2 − 2x3 + 2x4 − x5 = 0

x1 + 2x2 − x3 + 3x4 − 2x5 = 0

2x1 + 4x2 − 7x3 + x4 + x5 = 0

4.1. Write out the augmented matrix for the system of equations.

2.2. Solve the system by Gauss elimination method to the augmented matrix and determine a basis and the dimension of the solution space S of the homogeneous system.

.


Let W = {(a, b, c): a = b + c , a, b , c ∈ ℝ}. Show whether W is a subspace of ℝ3
.
Find all the roots in C of the equation x^4-2x^3+4x^2+6x-21=0, give n that two of its roots are equal in magnitude and opposite in sign.
Let T be a linear operator whose matrix with
respect to the basis {(1,1,1),(1,-1,0),(1,0,-1)} is the matrix [
4 0 0
0 1 0
0 0 1. ]
Obtain the matrix of T wrt the standard basis.
LATEST TUTORIALS
APPROVED BY CLIENTS