We can see that all vectors in "L\\cup\\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\\}" satisfy the equation "x_1+x_2+x_3+x_4+x_5=0".
Indeed, "l_1=(1,1,1,1,-4)" , so 1+1+1+1+(-4)=0
"l_2=(1,-1,3,-2,-1)" , so 1+(-1)+3+(-2)+(-1)=0
"u_1=(2,-3,4,-5,2)" , 2+(-3)+4+(-5)+2=0
"u_2=(-6,9,-12,15,-6)" , (-6)+9+(-12)+15+(-6)=0
"u_3=(3,\u22122,7,\u22129,1)" , 3+(-2)+7+(-9)+1=0
"u_4=(2,\u22128,2,\u22122,6)" , 2+(-8)+2+(-2)+6=0
"u_5=(\u22121,1,2,1,\u22123)" , (-1)+1+2+1+(-3)=0
"u_6=(0,\u22123,\u221218,9,12)" , 0+(-3)+(-18)+9+12=0
"u_7\u200b=(1,0,\u22122,3,\u22122)" , 1+0+(-2)+3+(-2)=0
"u_8\u200b=(2,\u22121,1,\u22129,7)" , 2+(-1)+1+(-9)+7=0
So all vectors in "L\\cup\\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\\}" satisfy the equation "x_1+x_2+x_3+x_4+x_5=0", that is "(1,1,1,1,1)\\cdot (x_1,x_2,x_3,x_4,x_5)=0"
Let "T\\vec{x}=(1,1,1,1,1)\\cdot\\vec{x}" , then "L\\cup\\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\\}\\subset\\ker T". Since "ImT\\neq{0} (\\bigl|(1,1,1,1,1)\\bigr|^2\\in ImT") and "ImT\\subset R" , we have "\\dim ImT=1"
Dimensional theorem (https://en.wikipedia.org/wiki/Dimension_theorem_for_vector_spaces) tells us that "\\dim\\ker T+\\dim ImT=\\dim V", that is "\\dim\\ker T+1=5", so "\\dim\\ker T=4".
Since "\\langle L\\cup\\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\\}\\rangle\\subset\\ker T", we have "\\dim\\langle L\\cup\\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\\}\\rangle\\le\\dim\\ker T=4", therefore "\\langle L\\cup\\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\\}\\rangle\\neq V" . We cannot choose "H" such that "\\langle L\\cup H\\rangle = V".
Comments
Leave a comment