Question #95282
Let L = {(1, 1, 1, 1, −4),(1, −1, 3, −2, −1)}. Find 6 vectors in the collection,
say H, such that L ∪ H spans the entire space.
1
Expert's answer
2019-09-26T11:12:35-0400

We can see that all vectors in L{u1,u2,u3,u4,u5,u6,u7,u8}L\cup\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\} satisfy the equation x1+x2+x3+x4+x5=0x_1+x_2+x_3+x_4+x_5=0.

Indeed, l1=(1,1,1,1,4)l_1=(1,1,1,1,-4) , so 1+1+1+1+(-4)=0

l2=(1,1,3,2,1)l_2=(1,-1,3,-2,-1) , so 1+(-1)+3+(-2)+(-1)=0

u1=(2,3,4,5,2)u_1=(2,-3,4,-5,2) , 2+(-3)+4+(-5)+2=0

u2=(6,9,12,15,6)u_2=(-6,9,-12,15,-6) , (-6)+9+(-12)+15+(-6)=0

u3=(3,2,7,9,1)u_3=(3,−2,7,−9,1) , 3+(-2)+7+(-9)+1=0

u4=(2,8,2,2,6)u_4=(2,−8,2,−2,6) , 2+(-8)+2+(-2)+6=0

u5=(1,1,2,1,3)u_5=(−1,1,2,1,−3) , (-1)+1+2+1+(-3)=0

u6=(0,3,18,9,12)u_6=(0,−3,−18,9,12) , 0+(-3)+(-18)+9+12=0

u7=(1,0,2,3,2)u_7​=(1,0,−2,3,−2) , 1+0+(-2)+3+(-2)=0

u8=(2,1,1,9,7)u_8​=(2,−1,1,−9,7) , 2+(-1)+1+(-9)+7=0

So all vectors in L{u1,u2,u3,u4,u5,u6,u7,u8}L\cup\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\} satisfy the equation x1+x2+x3+x4+x5=0x_1+x_2+x_3+x_4+x_5=0, that is (1,1,1,1,1)(x1,x2,x3,x4,x5)=0(1,1,1,1,1)\cdot (x_1,x_2,x_3,x_4,x_5)=0

Let Tx=(1,1,1,1,1)xT\vec{x}=(1,1,1,1,1)\cdot\vec{x} , then L{u1,u2,u3,u4,u5,u6,u7,u8}kerTL\cup\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\}\subset\ker T. Since ImT0((1,1,1,1,1)2ImTImT\neq{0} (\bigl|(1,1,1,1,1)\bigr|^2\in ImT) and ImTRImT\subset R , we have dimImT=1\dim ImT=1

Dimensional theorem (https://en.wikipedia.org/wiki/Dimension_theorem_for_vector_spaces) tells us that dimkerT+dimImT=dimV\dim\ker T+\dim ImT=\dim V, that is dimkerT+1=5\dim\ker T+1=5, so dimkerT=4\dim\ker T=4.

Since L{u1,u2,u3,u4,u5,u6,u7,u8}kerT\langle L\cup\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\}\rangle\subset\ker T, we have dimL{u1,u2,u3,u4,u5,u6,u7,u8}dimkerT=4\dim\langle L\cup\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\}\rangle\le\dim\ker T=4, therefore L{u1,u2,u3,u4,u5,u6,u7,u8}V\langle L\cup\{u_1,u_2,u_3,u_4,u_5,u_6,u_7,u_8\}\rangle\neq V . We cannot choose HH such that LH=V\langle L\cup H\rangle = V.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS