Let L = {(1, 1, 1, 1, −4),(1, −1, 3, −2, −1)}. Find 6 vectors in the collection,
say H, such that L ∪ H spans the entire space.
1
Expert's answer
2019-09-26T11:12:35-0400
We can see that all vectors in L∪{u1,u2,u3,u4,u5,u6,u7,u8} satisfy the equation x1+x2+x3+x4+x5=0.
Indeed, l1=(1,1,1,1,−4) , so 1+1+1+1+(-4)=0
l2=(1,−1,3,−2,−1) , so 1+(-1)+3+(-2)+(-1)=0
u1=(2,−3,4,−5,2) , 2+(-3)+4+(-5)+2=0
u2=(−6,9,−12,15,−6) , (-6)+9+(-12)+15+(-6)=0
u3=(3,−2,7,−9,1) , 3+(-2)+7+(-9)+1=0
u4=(2,−8,2,−2,6) , 2+(-8)+2+(-2)+6=0
u5=(−1,1,2,1,−3) , (-1)+1+2+1+(-3)=0
u6=(0,−3,−18,9,12) , 0+(-3)+(-18)+9+12=0
u7=(1,0,−2,3,−2) , 1+0+(-2)+3+(-2)=0
u8=(2,−1,1,−9,7) , 2+(-1)+1+(-9)+7=0
So all vectors in L∪{u1,u2,u3,u4,u5,u6,u7,u8} satisfy the equation x1+x2+x3+x4+x5=0, that is (1,1,1,1,1)⋅(x1,x2,x3,x4,x5)=0
Let Tx=(1,1,1,1,1)⋅x , then L∪{u1,u2,u3,u4,u5,u6,u7,u8}⊂kerT. Since ImT=0(∣∣(1,1,1,1,1)∣∣2∈ImT) and ImT⊂R , we have dimImT=1
Dimensional theorem (https://en.wikipedia.org/wiki/Dimension_theorem_for_vector_spaces) tells us that dimkerT+dimImT=dimV, that is dimkerT+1=5, so dimkerT=4.
Since ⟨L∪{u1,u2,u3,u4,u5,u6,u7,u8}⟩⊂kerT, we have dim⟨L∪{u1,u2,u3,u4,u5,u6,u7,u8}⟩≤dimkerT=4, therefore ⟨L∪{u1,u2,u3,u4,u5,u6,u7,u8}⟩=V . We cannot choose H such that ⟨L∪H⟩=V.
Comments