This matrix would be orthogonal if a product of the matrix and its transpose is a unit matrix:
DDT = E
Thus, we should first found a transpose matrix:
D = ∣ 1 2 0 1 2 0 1 0 − 1 2 2 1 2 ∣ D T = ∣ 1 2 0 − 1 2 0 1 2 1 2 0 1 2 ∣ D=
\begin{vmatrix}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{-1}{\sqrt{2}} & 2 & \frac{1}{\sqrt{2}}
\end{vmatrix}
D^T=
\begin{vmatrix}
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
0 & 1 & 2 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{vmatrix} D = ∣ ∣ 2 1 0 2 − 1 0 1 2 2 1 0 2 1 ∣ ∣ D T = ∣ ∣ 2 1 0 2 1 0 1 0 2 − 1 2 2 1 ∣ ∣
Now, we must multiply them together:
D D T = ∣ 1 2 0 1 2 0 1 0 − 1 2 2 1 2 ∣ ∣ 1 2 0 − 1 2 0 1 2 1 2 0 1 2 ∣ = ∣ 1 0 0 0 1 2 0 2 5 ∣ DD^T=
\begin{vmatrix}
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
0 & 1 & 0 \\
\frac{-1}{\sqrt{2}} & 2 & \frac{1}{\sqrt{2}}
\end{vmatrix}
\begin{vmatrix}
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
0 & 1 & 2 \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{vmatrix}
=
\begin{vmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 5
\end{vmatrix} D D T = ∣ ∣ 2 1 0 2 − 1 0 1 2 2 1 0 2 1 ∣ ∣ ∣ ∣ 2 1 0 2 1 0 1 0 2 − 1 2 2 1 ∣ ∣ = ∣ ∣ 1 0 0 0 1 2 0 2 5 ∣ ∣
The product is not the unit matrix. Thus, the D matrix was not orthogonal.
Comments