Question #94878
Determine if the matrix p=
D= 1/√2, 0, 1/√2
0, 1, 0
-1/√2, 2, 1/√2
Is othognal.
1
Expert's answer
2019-09-20T09:16:12-0400

This matrix would be orthogonal if a product of the matrix and its transpose is a unit matrix:


DDT = E


Thus, we should first found a transpose matrix:


D=1201201012212DT=1201201212012D= \begin{vmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{-1}{\sqrt{2}} & 2 & \frac{1}{\sqrt{2}} \end{vmatrix} D^T= \begin{vmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ 0 & 1 & 2 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{vmatrix}


Now, we must multiply them together:


DDT=12012010122121201201212012=100012025DD^T= \begin{vmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \\ \frac{-1}{\sqrt{2}} & 2 & \frac{1}{\sqrt{2}} \end{vmatrix} \begin{vmatrix} \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ 0 & 1 & 2 \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 5 \end{vmatrix}


The product is not the unit matrix. Thus, the D matrix was not orthogonal.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS