If A is rank 1, then A=uvT for non-zero column vectors u, v with n entries.
If A is skew-symmetric,
we must have: AT=−A
Thus:              (uvT)T=−uvT               Â
Hence:            vuT=−uvT
The column space of these matrices is the same. The column space of vuT is the span of v, whereas the column space of uvT is the span of u. So, we must have v=ku for some k∈R So, the last equation becomes
kuuT=−kuuT
since u≠0, we conclude that k=0, which means that v=0, which means that A=0. But this contradicts our assumption that A has rank 1
Comments
Leave a comment