Question #91410
Q. Find the dimension of the subspace of R4 that is span of the vectors
(█(1¦(-1)@0@1)), (█(2¦1@1@1)),(█(0¦0@0@0)),(█(1¦1@-2@-5))
1
Expert's answer
2019-07-17T10:15:00-0400
A=(1101211100001125)A=\begin{pmatrix} 1 & -1 & 0 & 1\\ 2 & 1 & 1 & 1\\ 0 & 0 & 0 & 0\\ 1 & 1 & -2 & -5 \end{pmatrix}

2 line minus 1 line and 4 line plus 1 line multiplied by 5:

A(1101121000006420)A \sim \begin{pmatrix} 1 & -1 & 0 & 1\\ 1 & 2 & 1 & 0\\ 0 & 0 & 0 & 0\\ 6 & -4 & -2 & 0 \end{pmatrix}

4 line plus 2 line multiplied by 2:


A(1101121000008000)A \sim \begin{pmatrix} 1 & -1 & 0 & 1\\ 1 & 2 & 1 & 0\\ 0 & 0 & 0 & 0\\ 8 & 0 & 0 & 0 \end{pmatrix}

Hence, we have three linearly independent vectors (1108),(0100),(1000),\begin{pmatrix} 1\\1\\0\\8 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix},\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, and


rankA=3\operatorname{rank}A=3

So, we have 3-dimension subspace of R4\mathbb{R}^4


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS