A = ( 1 − 1 0 1 2 1 1 1 0 0 0 0 1 1 − 2 − 5 ) A=\begin{pmatrix}
1 & -1 & 0 & 1\\
2 & 1 & 1 & 1\\
0 & 0 & 0 & 0\\
1 & 1 & -2 & -5
\end{pmatrix} A = ⎝ ⎛ 1 2 0 1 − 1 1 0 1 0 1 0 − 2 1 1 0 − 5 ⎠ ⎞ 2 line minus 1 line and 4 line plus 1 line multiplied by 5:
A ∼ ( 1 − 1 0 1 1 2 1 0 0 0 0 0 6 − 4 − 2 0 ) A \sim \begin{pmatrix}
1 & -1 & 0 & 1\\
1 & 2 & 1 & 0\\
0 & 0 & 0 & 0\\
6 & -4 & -2 & 0
\end{pmatrix} A ∼ ⎝ ⎛ 1 1 0 6 − 1 2 0 − 4 0 1 0 − 2 1 0 0 0 ⎠ ⎞ 4 line plus 2 line multiplied by 2:
A ∼ ( 1 − 1 0 1 1 2 1 0 0 0 0 0 8 0 0 0 ) A \sim \begin{pmatrix}
1 & -1 & 0 & 1\\
1 & 2 & 1 & 0\\
0 & 0 & 0 & 0\\
8 & 0 & 0 & 0
\end{pmatrix} A ∼ ⎝ ⎛ 1 1 0 8 − 1 2 0 0 0 1 0 0 1 0 0 0 ⎠ ⎞ Hence, we have three linearly independent vectors ( 1 1 0 8 ) , ( 0 1 0 0 ) , ( 1 0 0 0 ) , \begin{pmatrix} 1\\1\\0\\8 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix},\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, ⎝ ⎛ 1 1 0 8 ⎠ ⎞ , ⎝ ⎛ 0 1 0 0 ⎠ ⎞ , ⎝ ⎛ 1 0 0 0 ⎠ ⎞ , and
rank A = 3 \operatorname{rank}A=3 rank A = 3 So, we have 3-dimension subspace of R 4 \mathbb{R}^4 R 4
Comments