Question #91094
Reduce the following equation to standard form hence identify the conic it represents x2 - 3xy + y2 + 4x - 4y - 5 = 0
1
Expert's answer
2019-06-24T10:16:06-0400

equation:


x23xy+y2+4x4y5=0x^2-3xy+y^2+4x-4y-5=0

Ax2+Bxy+Cy2+Dx+Ey+F=0Ax^2+Bxy+Cy^2+Dx+Ey+F=0

Find eigenvalues of matrix


A33=(AB/2B/2C)A_{33}=\begin{pmatrix} A & B/2 \\ B/2 & C \end{pmatrix}

from equation


AzB/2B/2Cz=0\begin{vmatrix} A-z & B/2 \\ B/2 & C-z \end{vmatrix}=0

substituting A = 1, B = -3, C = 1 in this equation


1z3/23/21z=0\begin{vmatrix} 1-z & -3/2 \\ -3/2 & 1-z \end{vmatrix}=0

(1z)2(3/2)2=0(1-z)^2-(-3/2)^2=0

(13/2z)(1+3/2z)=0(1-3/2-z)(1+3/2-z)=0

(z+1/2)(z5/2)=0(z+1/2)(z-5/2)=0

z1=1/2,z2=5/2z_1=-1/2, z_2=5/2

Let


Aq=(AB/2D/2B/2CE/2D/2E/2F)=(13/223/212225)A_q=\begin{pmatrix} A& B/2 &D/2\\ B/2 & C&E/2\\ D/2&E/2&F \end{pmatrix}= \begin{pmatrix} 1& -3/2 &2\\ -3/2 & 1&-2\\ 2&-2&-5 \end{pmatrix}

Standard form of equation


x23xy+y2+4x4y5=0x^2-3xy+y^2+4x-4y-5=0

can be found using formula:


z1x2+z2y2=detAq/detA33z_1x'^2+z_2y'^2=-detA_q/detA_{33}

detA33=13/23/21=19/4=5/4detA_{33}=\begin{vmatrix} 1& -3/2 \\ -3/2 & 1 \end{vmatrix}=1-9/4=-5/4

detAq=13/223/212225=detA_q=\begin{vmatrix} 1& -3/2 &2\\ -3/2 & 1&-2\\ 2&-2&-5 \end{vmatrix}=

add the first row to the second

13/221/21/20225=\begin{vmatrix} 1& -3/2 &2\\ -1/2 & -1/2&0\\ 2&-2&-5 \end{vmatrix}=

subtract the first column from the second

15/221/200245=\begin{vmatrix} 1& -5/2 &2\\ -1/2 & 0&0\\ 2&-4&-5 \end{vmatrix}=

(1/2)(5/2(5)(4)2)=41/4-(-1/2)(-5/2*(-5)-(-4)*2)=41/4

Substitute all found values in the equation


z1x2+z2y2=detAq/detA33z_1x'^2+z_2y'^2=-detA_q/detA_{33}

1/2x2+5/2y2=(41/4)/(5/4)=41/5-1/2x'^2+5/2y'^2=-(41/4)/(-5/4)=41/5

dividing by (41/5)


1/2/(41/5)x2+5/2/(41/5)y2=1-1/2/(41/5)x'^2+5/2/(41/5)y'^2=1

x2/(82/5)+y2/(82/25)=1-x'^2/(82/5)+y'^2/(82/25)=1

since coefficients of squared terms have different signs, this is standard equation of hyperbola.

Answer: standard equation:

x2/(82/5)+y2/(82/25)=1-x'^2/(82/5)+y'^2/(82/25)=1

conic section is hyperbola.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS