(123456)\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}(142536) * (123456)\begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{pmatrix}⎝⎛135246⎠⎞ = (1∗1+2∗3+3∗51∗2+2∗4+3∗64∗1+5∗3+6∗54∗2+5∗4+6∗6)\begin{pmatrix} 1*1 + 2*3 + 3*5 & 1*2 + 2*4 + 3*6 \\ 4*1 + 5*3 + 6*5 & 4*2 + 5*4 + 6*6 \end{pmatrix}(1∗1+2∗3+3∗54∗1+5∗3+6∗51∗2+2∗4+3∗64∗2+5∗4+6∗6) = (22284964)\begin{pmatrix} 22 & 28 \\ 49 & 64 \end{pmatrix}(22492864)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments