Question #95197
Check p(x) + p(−x) ∈ P
(e)
for every p(x) ∈ R(x). Check that the map
ψ : R[x] → P
(e) given by ψ(p(x)) = p(x)+p(−x)
2
is a linear map. Further, check that
ψ
2 = ψ. Determine the kernel of ψ.
1
Expert's answer
2019-09-25T09:28:24-0400

1)Let p(x)R[x]p(x)\in \mathbb R[x] and q(x)=p(x)+p(x)q(x)=p(x)+p(-x) . We have q(x)=p(x)+p((x))=p(x)+p(x)=q(x)q(-x)=p(-x)+p(-(-x))=p(-x)+p(x)=q(x) , so q(x)P(e)q(x)\in P(e)

2)Check that ψ\psi is a linear map. Let p(x)R[x]p(x)\in \mathbb R[x], q(x)R[x]q(x)\in\mathbb R[x] and αR\alpha\in\mathbb R, then

ψ(p(x)+q(x))=(p(x)+q(x))+(p(x)+q(x))2=\psi(p(x)+q(x))=\frac{\bigl(p(x)+q(x)\bigr)+\bigl(p(-x)+q(-x)\bigr)}{2}=

=p(x)+p(x)2+q(x)+q(x)2=ψ(p(x))+ψ(q(x))=\frac{p(x)+p(-x)}{2}+\frac{q(x)+q(-x)}{2}=\psi(p(x))+\psi(q(x)) and

ψ(αp(x))=αp(x)+αp(x)2=αp(x)+p(x)2=αψ(p(x))\psi(\alpha p(x))=\frac{\alpha p(x)+\alpha p(-x)}{2}=\alpha \frac{p(x)+p(-x)}{2}=\alpha\psi(p(x))

So ψ\psi is a linear map

3)Check that ψ2=ψ\psi^2=\psi. Let p(x)R[x]p(x)\in \mathbb R[x], then

ψ2(p(x))=ψ(ψ(p(x)))=ψ(p(x))+ψ(p(x))2=\psi^2(p(x))=\psi\bigl(\psi(p(x))\bigr)=\frac{\psi(p(x))+\psi(p(-x))}{2}=

=p(x)+p(x)2+p(x)+p((x))22=p(x)+p(x)2=ψ(p(x))=\frac{\frac{p(x)+p(-x)}{2}+\frac{p(-x)+p(-(-x))}{2}}{2}=\frac{p(x)+p(-x)}{2}=\psi(p(x))

So ψ2=ψ\psi^2=\psi

4)Let p(x)kerψp(x)\in\ker\psi , then 0=ψ(p(x))=p(x)+p(x)20=\psi(p(x))=\frac{p(x)+p(-x)}{2} . We have p(x)=p(x)p(x)=-p(-x), that is p(x)p(x) is an odd polynomial. So kerψ\ker\psi is the set of odd polynomials.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS