1)Let p(x)∈R[x] and q(x)=p(x)+p(−x) . We have q(−x)=p(−x)+p(−(−x))=p(−x)+p(x)=q(x) , so q(x)∈P(e)
2)Check that ψ is a linear map. Let p(x)∈R[x], q(x)∈R[x] and α∈R, then
ψ(p(x)+q(x))=2(p(x)+q(x))+(p(−x)+q(−x))=
=2p(x)+p(−x)+2q(x)+q(−x)=ψ(p(x))+ψ(q(x)) and
ψ(αp(x))=2αp(x)+αp(−x)=α2p(x)+p(−x)=αψ(p(x))
So ψ is a linear map
3)Check that ψ2=ψ. Let p(x)∈R[x], then
ψ2(p(x))=ψ(ψ(p(x)))=2ψ(p(x))+ψ(p(−x))=
=22p(x)+p(−x)+2p(−x)+p(−(−x))=2p(x)+p(−x)=ψ(p(x))
So ψ2=ψ
4)Let p(x)∈kerψ , then 0=ψ(p(x))=2p(x)+p(−x) . We have p(x)=−p(−x), that is p(x) is an odd polynomial. So kerψ is the set of odd polynomials.
Comments