Question #86547
Let (x1,x2,x3) and (y1,y2,y3) represent the coordinates with respect to the bases B1={(1,0,0),(0,1,0),(0,0,1)}, B2={(1,0,0),(0,1,2),(0,2,1)}. If Q(x)=x1^2-2x1x2+4x2x3+x2^2+x3^2 , find the representation of Q in terms of (y1,y2,y3).
1
Expert's answer
2019-03-22T12:12:51-0400

The following equalities are true:


(1,0,0)=1(1,0,0)+0(0,1,0)+0(0,0,1)(1, 0, 0)=1*(1, 0, 0)+0*(0, 1, 0)+0*(0, 0, 1)(0,1,2)=0(1,0,0)+1(0,1,0)+2(0,0,1)(0, 1, 2)=0*(1, 0, 0)+1*(0, 1, 0)+2*(0, 0, 1)(0,2,1)=0(1,0,0)+2(0,1,0)+1(0,0,1)(0, 2, 1)=0*(1, 0, 0)+2*(0, 1, 0)+1*(0, 0, 1)C=(100012021)C=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}CT=(100012021)C^T=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}

Q(X)=x12+2x1x2+4x2x3+x22+x32Q(X)={x_1}^2+2x_1x_2+4x_2x_3+{x_2}^2+{x_3}^2A=(110112021)A=\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}

Then the matrix of the form Q in the base B2 is equal to

B=CTAC=(100012021)(110112021)(100012021)B=C^TAC=\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}

B=(112154045)(100012021)=(1121131421413)B=\begin{pmatrix} 1 & 1 & 2 \\ 1 & 5 & 4 \\ 0 & 4 & 5 \end{pmatrix}\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix}=\begin{pmatrix} 1 & 1 & 2 \\ 1 & 13 & 14 \\ 2 & 14 & 13 \end{pmatrix}

So the form Q in the base B2 will


Q(Y)=y12+13y22+13y32+2y1y2+4y1y3+28y2y3Q(Y)={y_1}^2+13{y_2}^2+13{y_3}^2+2y_1y_2+4y_1y_3+28y_2y_3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS