The following equalities are true:
"Q(X)={x_1}^2+2x_1x_2+4x_2x_3+{x_2}^2+{x_3}^2""A=\\begin{pmatrix}\n 1 & 1 & 0 \\\\\n 1 & 1 & 2 \\\\ 0 & 2 & 1\n\\end{pmatrix}"
Then the matrix of the form Q in the base B2 is equal to
"B=C^TAC=\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 2 \\\\ 0 & 2 & 1\n\\end{pmatrix}\\begin{pmatrix}\n 1 & 1 & 0 \\\\\n 1 & 1 & 2 \\\\ 0 & 2 & 1\n\\end{pmatrix}\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 2 \\\\ 0 & 2 & 1\n\\end{pmatrix}""B=\\begin{pmatrix}\n 1 & 1 & 2 \\\\\n 1 & 5 & 4 \\\\ 0 & 4 & 5\n\\end{pmatrix}\\begin{pmatrix}\n 1 & 0 & 0 \\\\\n 0 & 1 & 2 \\\\ 0 & 2 & 1\n\\end{pmatrix}=\\begin{pmatrix}\n 1 & 1 & 2 \\\\\n 1 & 13 & 14 \\\\ 2 & 14 & 13\n\\end{pmatrix}"
So the form Q in the base B2 will
Comments
Leave a comment